Varvasyonel hibrit eleman metodu ile baraj-rezervuar etkileşim probleminin çözümü
Solving dam-reservoir interaction problem by using variational hybrit element method
- Tez No: 66794
- Danışmanlar: PROF. DR. M. ERTAÇ ERGÜVEN
- Tez Türü: Yüksek Lisans
- Konular: İnşaat Mühendisliği, Civil Engineering
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 1997
- Dil: Türkçe
- Üniversite: İstanbul Teknik Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: İnşaat Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 50
Özet
ÖZET Deprem esnasında elastik yapı ve bu yapıyı çevreleyen sıvı arasındaki etkileşim elastik yapının güvenliği açısından dikkate alınması gereken bir konudur. Şimdiye kadar bir çok makale ile birlikte baraj -rezervuar etkileşim problemi ele alınmıştır. Yapılan bu çalışmalarda kesin çözümler, sonlu eleman yöntemi,sınır eleman yöntemi ve hatta iki metodun bir arada kullanıldığı çözümler elde edilmiştir. Barajların tasarımında özellikle aktif sismik bölgeler için baraj yapısı ve rezervuar arasındaki etkileşim hesaplarda önemli bir faktördür. Sismik kuvvetlere maruz bırakılan barajlardaki hidrodinamik basınç dağılımları ilkin 1933 yılında Westergaard tarafından geliştirildi.Bu konudaki bir çok araştırma o zamandan beri yayınlandı.Zangar&Haefeli, Zienkiewicz & Nath, Chopra, Hanna & Humar hepsi bu dağılımın hesabında rijit bir cisim olarak barajı ele almışlardır. Yapılan çalışmalarda genelde sayısal teknikler kullanılırken kesin analitik çözümler genelde suda titreşen basit elastik yapılar için kullanılmıştır. Bu araştırmada incelenen çubuk bir elemanın sıvı ile etkileşim probleminde de SONLU ELEMAN YÖNTEMİ kullanılmıştır. Bu çalışmada baraja yakın kısımlarda değişken derinlikte belli bir uzaklıktan sonra sabit derinlikte olduğu rezervuarın baraj arkasında sonsuz uzunlukta olduğu eıw1 harmonik zorlama problemi ele alınmış daha sonra sonsuz uzun sabit derinliğe sahip rezervuarın harmonik zorlama haline ait problemler çözülmüştür.Problemin çözümünde baraj ekseni boyunca çubuk elemanlara ayrılarak sonlu elemanlar yöntemiyle incelenirken,rezervuara ait çözümlerde hız potansiyeli için rijit taban koşulu ve hidrodinamik basıncın sıfır olduğu serbest yüzey koşulunu sağlayan seri çözüm kullanılmıştır.Baraj-rezervuar etkileşimi problemi bir enerji prensibine dayalı varyasyonel yöntem ile çözülmüştür. Söz konusu yöntemde hız potansiyeli ile yapı üzerindeki düğüm noktalarının yer değiştirmeleri serbest değişken olarak seçilmiştir. Yapılan varsayımlar şöyledir: Sıvı, sıkıştırılabilir, homojen ve viskoz değildir. Çubuk elemandaki yer değiştirmeler küçük kabul edilecektir. VII
Özet (Çeviri)
SUMMARY SOLVING DAM - RESERVOIR INTERACTION PROBLEM BY USING VARIATIONAL HYBRID ELEMENT METHOD Exact analytical solutions are derived for simple elastic structures vibrating in water. Linear acoustic and beam theories are used to treat several cases some of which have been studied by more approximate methods before. A hybrid element method which is based on a localized variational principle is demonstrated numerically or a beam - dam; its theoretical bases is then generalized for arbitrary two - dimensional elastic structure. Foundation compliance is not included. In the presence of earthquakes the interaction between an elastic structure and the surrounding fluid can be important in considering the safety of the structure. The 1964 Alaska earthquake caused the first large scale damage to tanks of modern design and initiated many investigations into the dynamic characteristics of flexible containers. In addition, the evoluation of both the digital computer and various associated numerical techniques has significantly enhanced solution capability. Several studies were carried out to investigate the dynamic interaction between the deformable walls of the tank and the liquid. An extensive literature has developed during the past 45 years on the subject of waves caused by vibrating tanks of heavy fluid. Part of this literature appeared in the 1950s and 1960s in connection with the sloshing problem for aircraft fuel tanks. Several examples of this work, which was concerned primarily with calculating natural frequencies and modes rather than time - history responses to specified tank accelerations, are given by Graham and Rodriges and Silverman and Abramson. The second part of this literature originated in 1949 with a paper by Jacobsen and has continued to the present time. The performance of ground - based liquid storage tanks such as petroleum, LNG, LPG, nuclear containment vessels and so forth during recent earthquakes demonstrates the need for a reliable technique to assess their seismic safety. Early developments of seismic response theories of liquid storage tanks considered the container to be rigid and focused attention on the dynamic response of the contained liquid. A common seismic design procedure is based on the mechanical model derived by Housner for tanks with rigid walls. In this approach, a mathematical model of the liquid - rigid tank system was used and the hydrodynamic effects were evaluated approximately as the sum of two components, viz. an impulsive part which represents the portion of the liquid which moves in unison with the tank and a convective component which represent the portion of the liquid sloshing in the tank. Epstien improved Housner's work and presented design curves for estimating the bending and overturning moment induced by the hydrodynamic pressure, for Vfflcylindrical as well as rectangular rigid tanks. The following studies can be indicated as a sample on the dynamic characteristics of the liquid with rigid walls. In engineering problems involved fluid - structure interaction with sloshing, the fluid and sloshing behaviour is determined with a rigid wall assumption and than the structural response is obtained by imposing the dynamic pressure to the structural model. This approach generally yields concervative results since the rigid - wall forces are larger than the flexible wall forces. But an uncoupled analysis underestimates the structural response if the natural frequencies of the coupled system are close to the excitation frequencies, which is often the case in the seismic analysis of liquid - filled tanks and nuclear reactor systems. The exact mathematical procedure for describing fluid oscillations in a moving container is extremely complex. Therefore, the following simplifying assumptions aregeneraly employed: 1. Nonviscous fluid, 2. Compressible fluid, 3. Small displacements, velocities and slopes, 4. İrrotational flow field, 5. Homogeneous fluid., ?'»'. The assumption of irrotational flow ensures the existence of a fluid velocity potential,
Benzer Tezler
- Değişken kesitli baraj-rezervuar etkileşim problemlerinin varyasyonel hibrid eleman metodu ile çözümü
Başlık çevirisi yok
HAKAN UÇAR
Yüksek Lisans
Türkçe
1998
İnşaat Mühendisliğiİstanbul Teknik Üniversitesiİnşaat Mühendisliği Ana Bilim Dalı
PROF. DR. ERTAÇ ERGÜVEN
- Damage evaluation of civil engineering structures under extreme loadings
Dinamik yükler altında mühendislik yapılarında hasar analizi
BAHAR AYHAN TEZER
Doktora
İngilizce
2013
İnşaat Mühendisliğiİstanbul Teknik Üniversitesiİnşaat Mühendisliği Ana Bilim Dalı
PROF. DR. HASAN ENGİN
PROF. DR. ADNAN İBRAHİMBEGOVİC
- Zamana bağlı kısmi diferensiyel denklemlerin çözümleri için hiperbolik tanjant ve varyasyonel hibrit yöntemleri
Hyperbolic tangent and variational hybrid methods for the solutions of time dependent partial differentıal equations
ONUR KARAOĞLU
- Akışkanlar mekaniği problemlerine bazı yarı-analitik hibrit tekniklerin uygulanması
Application of some semi-analytical hybrid techniques to fluid mechanics problems
HALDUN ALPASLAN PEKER
Doktora
Türkçe
2016
Makine MühendisliğiSelçuk ÜniversitesiMatematik Ana Bilim Dalı
PROF. DR. GALİP OTURANÇ
- Hibrit kuantum-klasik makine öğrenmesi ile KOVID-19 tespiti
COVID-19 detection with hybrid quantum-classic machine learning
ERDİ ACAR
Yüksek Lisans
Türkçe
2021
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolÇanakkale Onsekiz Mart ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
PROF. DR. İHSAN YILMAZ