Geri Dön

Yarı riemann manifoldlarında eşlenik nokta ve varyasyon hesabı

Semi riemann manifolds conjugate point and variation calculus

  1. Tez No: 67664
  2. Yazar: KAYIHAN ÖZCAN
  3. Danışmanlar: PROF. DR. ERTUĞRUL ÖZDAMAR
  4. Tez Türü: Yüksek Lisans
  5. Konular: Matematik, Mathematics
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 1997
  8. Dil: Türkçe
  9. Üniversite: Uludağ Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Matematik Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 98

Özet

Özet yok.

Özet (Çeviri)

ABSTRACT This thesis is prepared in four sections. In the first section, Rudiments about the thesis are given. In the second section neccessary essential notions are explained. In the third section, the variation of the curves which are taken on any fields and Jacobi fields are defined. At that time, the Jacobi equation which is known for the fields of speed vectors and the jacobi equation which is related to the length of the field of the speed vectors are used equivalent to each other in literature. This thesis has given that there is a possible transition between two equations. These two equations are called Jacobi equation without marking off. The conjugate points on a surface of along a geodesic are researched in this thesis. From there, focal points are defined on the semi-Riemann manifolds and second variation formullas, are given. In the fourth section is taken partly indepentable from other sections. In this section after giving a summary of parallel surfaces, some orginal results are gained related to the conjugate points. It can be acceptable as characterisations of the properties of being a geodesic, conjugate point, etc. On the corresponding parallel surfaces. These characterisations that are given in the fourth section, don't exist in literature, they are orginals. The references and the index of the words are added at the end of this thesis. This thesis contains ninetyone pages and twentytwo shapes.

Benzer Tezler

  1. Yarı-Riemann manifoldlarında lightlike hiper yüzeylerin geometrisi üzerine

    On geometry of lightlike hypersurfaces in semi-Riemannian manifolds

    EROL YAŞAR

    Doktora

    Türkçe

    Türkçe

    2006

    MatematikSüleyman Demirel Üniversitesi

    Matematik Ana Bilim Dalı

    PROF. DR. CEYLAN ÇÖKEN

  2. E31 yarı öklidiyen uzayında yarı-öklidiyen yüzeylerin eğrilikleri üzerine

    On the curvatures the pseudo-euclidean surfaces in pseudo-euclidean space E31

    AHMET YÜCESAN

    Yüksek Lisans

    Türkçe

    Türkçe

    1998

    MatematikSüleyman Demirel Üniversitesi

    Matematik Ana Bilim Dalı

    DOÇ.DR. ADİL KILIÇ

  3. Yoğunluklu Riemann manifoldların geometrisi

    Geometry of Riemannian manifolds with density

    ERDEM KOCAKUŞAKLI

    Doktora

    Türkçe

    Türkçe

    2020

    MatematikAnkara Üniversitesi

    Matematik Ana Bilim Dalı

    PROF. DR. İSMAİL GÖK

  4. Lorentz-Minkowski uzaylarında null eğrileri üzerine

    On null curves in Lorentz-Minkowski spaces

    HİLMİ KAYA

    Yüksek Lisans

    Türkçe

    Türkçe

    2016

    MatematikSüleyman Demirel Üniversitesi

    Matematik Ana Bilim Dalı

    PROF. DR. ABDİLKADİR CEYLAN ÇÖKEN

  5. On geodesic mappings of Riemannian manifolds

    Riemann manifoldlarında jeodezik dönüşümler

    AHMET UMUT ÇORAPLI

    Yüksek Lisans

    İngilizce

    İngilizce

    2022

    Matematikİstanbul Teknik Üniversitesi

    Matematik Mühendisliği Ana Bilim Dalı

    PROF. DR. ELİF CANFES