Yarı riemann manifoldlarında eşlenik nokta ve varyasyon hesabı
Semi riemann manifolds conjugate point and variation calculus
- Tez No: 67664
- Danışmanlar: PROF. DR. ERTUĞRUL ÖZDAMAR
- Tez Türü: Yüksek Lisans
- Konular: Matematik, Mathematics
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 1997
- Dil: Türkçe
- Üniversite: Uludağ Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Matematik Ana Bilim Dalı
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 98
Özet
Özet yok.
Özet (Çeviri)
ABSTRACT This thesis is prepared in four sections. In the first section, Rudiments about the thesis are given. In the second section neccessary essential notions are explained. In the third section, the variation of the curves which are taken on any fields and Jacobi fields are defined. At that time, the Jacobi equation which is known for the fields of speed vectors and the jacobi equation which is related to the length of the field of the speed vectors are used equivalent to each other in literature. This thesis has given that there is a possible transition between two equations. These two equations are called Jacobi equation without marking off. The conjugate points on a surface of along a geodesic are researched in this thesis. From there, focal points are defined on the semi-Riemann manifolds and second variation formullas, are given. In the fourth section is taken partly indepentable from other sections. In this section after giving a summary of parallel surfaces, some orginal results are gained related to the conjugate points. It can be acceptable as characterisations of the properties of being a geodesic, conjugate point, etc. On the corresponding parallel surfaces. These characterisations that are given in the fourth section, don't exist in literature, they are orginals. The references and the index of the words are added at the end of this thesis. This thesis contains ninetyone pages and twentytwo shapes.
Benzer Tezler
- Yarı-Riemann manifoldlarında lightlike hiper yüzeylerin geometrisi üzerine
On geometry of lightlike hypersurfaces in semi-Riemannian manifolds
EROL YAŞAR
Doktora
Türkçe
2006
MatematikSüleyman Demirel ÜniversitesiMatematik Ana Bilim Dalı
PROF. DR. CEYLAN ÇÖKEN
- E31 yarı öklidiyen uzayında yarı-öklidiyen yüzeylerin eğrilikleri üzerine
On the curvatures the pseudo-euclidean surfaces in pseudo-euclidean space E31
AHMET YÜCESAN
Yüksek Lisans
Türkçe
1998
MatematikSüleyman Demirel ÜniversitesiMatematik Ana Bilim Dalı
DOÇ.DR. ADİL KILIÇ
- Yoğunluklu Riemann manifoldların geometrisi
Geometry of Riemannian manifolds with density
ERDEM KOCAKUŞAKLI
- Lorentz-Minkowski uzaylarında null eğrileri üzerine
On null curves in Lorentz-Minkowski spaces
HİLMİ KAYA
Yüksek Lisans
Türkçe
2016
MatematikSüleyman Demirel ÜniversitesiMatematik Ana Bilim Dalı
PROF. DR. ABDİLKADİR CEYLAN ÇÖKEN
- On geodesic mappings of Riemannian manifolds
Riemann manifoldlarında jeodezik dönüşümler
AHMET UMUT ÇORAPLI
Yüksek Lisans
İngilizce
2022
Matematikİstanbul Teknik ÜniversitesiMatematik Mühendisliği Ana Bilim Dalı
PROF. DR. ELİF CANFES