Geri Dön

Elektrikli taşıtlar için doğrudan sürüşlü ve bulanık patinaj önleyicili bir tahrik sistemi

Başlık çevirisi mevcut değil.

  1. Tez No: 75072
  2. Yazar: AZMİ DEMİREL
  3. Danışmanlar: PROF. DR. NEJAT TUNCAY
  4. Tez Türü: Doktora
  5. Konular: Elektrik ve Elektronik Mühendisliği, Electrical and Electronics Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 1998
  8. Dil: Türkçe
  9. Üniversite: İstanbul Teknik Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Elektrik Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 156

Özet

ÖZET Bu tez çalışmasının amacı bir elektrikli otomobile ait tahrik sisteminin geliştirilmesidir. Bu sistemde çekiş yapan tekerlek basma bir adet olmak üzere iki adet anahtarlamalı relüktans motoru, bunlara ait sürücü ve kontrol devreleri bulunmaktadır. Çalışma kuramsal ve uygulamalı olarak iki kısımdan oluşmaktadır. Elektrikli otomobilin yük karakterine uygun olması nedeniyle motorların akımları kontrol edilerek moment kontrolü uygulanmış, böylece viraj dönüşleri esnasında viraj içerisinde ve dış tarafında kalan tekerlekleri tahrik eden motorların yükü dengeli bir şekilde paylaşmaları sağlanmıştır. Ayrıca standart bir benzinli otomobilin teknik verilerinden yola çıkılarak aynı otomobili tahrik edebilecek bir anahtarlamalı relüktans motoru tasannu yapılmıştır. Anahtarlamalı relüktans makinelarına ait güç elektroniği çeviricilerinin anahtar kayıplarının azaltılmasına yönelik olarak aynı çevirici yapısında farkı işlevler için farklı tür anahtarlama elemanları kullanılmıştır. Çekiş yapan tekerleklerin kaygan bir zemin üzerine gelmesi halinde patinaj yaparak devir sayılarım aşırı büyümesinin önüne geçmek amacıyla bir bulanık kontrol sistemi gerçekleştirilmiştir. Sistemi oluşturan akım kontrollü anahtarlamalı relüktans makinası ve bulanık kontrolörün benzetim modelleri kurularak tüm sistemin bilgisayar benzetimi yapılmıştır. Benzetim sonuçlan farklı sürüş ve yol şartlarında patinaj önleme sisteminin etkin olarak çalıştığını göstermiştir. Daha sonra ise iki adet anahtarlamalı relüktans makinasının ayrı ayrı sürülmesi ve yüklenmesi deneysel olarak gerçekleştirilmiş ve bulanık kontrolörün tüm sistemi denetlemesi sağlanmıştır. Çeşitli patinaj durumlarında deneysel olarak elde edilen sonuçların benzetim modeli üzerinde kuramsal olarak bulunan sonuçlarla tam bir uyum içerisinde olduğu gösterilmiştir. XVU

Özet (Çeviri)

A DIRECT DRIVE SYSTEM WITH FUZZY ANTI SKID CONTROLLER FOR ELECTRIC VEHICLES SUMMARY Abstract A direct drive system with anti-skidding ability for electric cars is proposed. This system is based on switched reluctance motors and fuzzy logic control. A switched reluctance motor and its hybrid power electronic converter are designed at first. Then a fuzzy rule base is constructed and drive system's computer simulation is achieved. A PC based digital fuzzy logic controller software and necessary enviromental hardware are realized and some experimental results are measured. The simulation and experimental results show that the developed system succesfully drives the wheels and effectively prevents the system from skidding. 1 Introduction During the past decade, there has been extensive research activities on electric vehicles (EV). Basically there are two main drive schemes for EV's. In the first group, the motor control technology involves to rotate the main shaft of the vehicle, similar to the combustion engine driven vehicles where power is transmitted to the wheels through a mechanical differential. The second group which is called direct drive, wheels are driven directly by the motors. Among these, brushless d.c. and switched reluctance motors with some unconventional topologies are worth to mention. Direct drive offers various advantages. Elimination of the mechanical differential gearbox reduces the weight and the mechanical power losses and improves the overall efficiency. However, there are certain disadvantages as well. Since each wheel is driven individually, their torque and speed should be regulated continuously. It is also necessary to sustain the stability of the car even it is travelling on a flat road. Anti-skid control is another parameter for uneven slippery roads. As a result, control is complex with higher cost and lower reliability. 2 Proposed system The objective of this study is to develop a mechanical-differentialless direct-drive schedule for electric vehicles. First the theoritical study is attempted. The switched reluctance motors is chosen for driving the rear wheels. In the first part of the study the mathematical simulation model of the whole system is formed by using theMATLAB-SIMULINK software. The torque of SRM is proportional with the square of current and the constant current drive is impossible for high speed cases since back e.m.f. of the motor becomes dominant. It may also necessary to employ firing advance scheme or dwell angle widening techniques. Altough these techniques are taken into consideration in our model, the high speed application seems not to be required as a result of the nature of the direct drive motor design technique. 2.1 Motors A 12/8 pole switched reluctance motor is designed to drive the each rear wheel by using classical design procedures. The nominal torque of the each SRM is calculated from a standard internal combustion engine's maximum output torque value. The results of the design are not best values for the minimum weight, cost and maximum efficiency. Since there are curves on the roads, speeds of the wheels are not equal. Each wheel has a different speed. The speed is lower for the inner wheel and higher for the outer one. The ratio of them is proportional with the radius of the road's curvature. For the conventional vehicles, the mechanical differential can regulate this. In addition, when one wheel comes on the slippery surface, the load torque drops suddenly and speed of the wheel goes up which is called skidding. When one of driven wheel skids the other wheel cant produce any torque, even on an ideal surface. The ordinary mechanical differential can't prevent this situation. In this study, an electronic anti-skidding system is proposed and it's operational principles are established by using the fuzzy logic control method. 2.2 Fuzzy Anti Skid System The fuzzy logic control of anti-skidding system is based upon two variables. The first one is rotation angle of the steering wheel and the second is speed ratio of the driven wheels. The first fuzzy variable has three membership functions depicted in fig.l, which are defined to represent the straightforward (Z), turning left (NS) and turning right (PS) conditions. -0.04 0.04 Fig.l Membership functions representing the rotation angle of the steering wheel The speed ratio fuzzy variable has five membership functions (NB, NS, Z, PS, PB) as shown in fig2. XIX0.85 0.8696 0.862 1 0.99 0.9852 1.015 1.01 dn 1.159 1.15 Fig.2 Membership functions representing the wheel's speed ratio The skidding wheel can be determined by using both of the fuzzy variables the rotation angle of steering wheel and the wheels speed ratio. For example if steering wheel is not turned to any direction, car is moving staightforward, the ratio of wheels speed must be equal to one. Any other value of the ratio means one wheel is skidding. If one wheel is skidding the current of the driver motor must reduced. A set of rules can be developed for all of the driving and road conditions. The rules for each motor are shown in matrice form in fig3. Fig.3 Fuzzy Associative Memories The torque (and speed ) of the skidding wheel is reduced by applying a control signal which produced by fuzzy controlled anti-skidding system. Computer simulations yielded that the fuzzy controlled anti-skidding system and torque control of the motors could easily prevent skidding, and takes the curvatures of the road succesfully. The block diagram of the system is shown in fig. 4. XXSteering wheel angle Fig.4 Block diagram of the system 3 Experimental Study As a first part of the experimental study, two equal conventional d.c. machines are chosen and one of the motor's skid condition is established. It is observed that control system prevents skidding successfully in various simulated road and driving conditions. Experimental results verify that the fuzzy controller can successfully drives wheels in harmony without any skidding. The second part of the experimental implementation of the study, two similar 6/4 pole switched reluctance motors are reconstructed from an earlier designed motors. These motors are not particulary designed for direct drive applications for which higher number of poles and higher radius would have been preferable. These twin motors are seperately controlled by a fuzzy logic controller through two converters. The schematic diagram of the converter is shown in fig.5 which employs three MCT's for phase commutation and the upper switch, which is a MOSFET, controls the PWM operation to keep the current constant. This configuration is found flexible and useful since the high frequency switching is necessary for hysteresis band PWM current-control scheme where switching frequency is high and switching losses are dominant. The MOSFET offers advantages in this respect. On the other hand, because of the low operating frequency, the forward voltage drop and conduction power losses are dominant for commutating switches, and MCT's are better in this respect. As a result a hybrid configuration of the power converter is developed. XXIMCTI MCT2 MCT3 Fig. 5 SRM Converter circuit 4 Conclusion An electronic anti-skidding system is proposed to control the wheels of the electric vehicles. The developed method utilises fuzzy logic theory and regulate each wheel's speed to avoid skidding. For conventional d.c. motor drive model the current control method is applied and satisfactory regulation is calculated. For switched reluctance motor model square of the current is controlled and good regulation is also calculated. The experimental study has conducted on two dc motors and two SRMs. Results have shown that the controller could run motors for various speeds in harmony preventing skidding.

Benzer Tezler

  1. Integrated management of mixed fleets of electric and conventional vehicles under routing considerations

    Rotalama etmenleri altında elektrikli ve konvansiyonel araçların karma filolarının bütünleşik yönetimi

    REEMA TALAB HAMMAD AL-DALAIN

    Doktora

    İngilizce

    İngilizce

    2021

    İşletmeİstanbul Teknik Üniversitesi

    İşletme Mühendisliği Ana Bilim Dalı

    PROF. DR. DİLAY ÇELEBİ

  2. Uzay vektör modülasyonu ile kontrol edilen bir invertörün sürdüğü asenkron motor tahrikinin modellenmesi ve simülasyonu

    Modeling and simulation of an asynchronous motor drive for the traction of an control electric vehcle fed by an inverter controlled using svpwm

    INOUSSA ALBADE BAGUE

    Yüksek Lisans

    Türkçe

    Türkçe

    2018

    Elektrik ve Elektronik MühendisliğiYıldız Teknik Üniversitesi

    Elektrik Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ MEHMET SALİH TACİ

  3. Arka tekerlekten bağımsız-tahrikli elektrikli taşıtlar için savrulma dinamiği kontrol sistemi tasarımı ve analizi

    Yaw stability control system design and analysis for rear wheel independent-drive electric vehicles

    CELAL TAYFUR KOÇ

    Yüksek Lisans

    Türkçe

    Türkçe

    2023

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolYıldız Teknik Üniversitesi

    Kontrol ve Otomasyon Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ MUMİN TOLGA EMİRLER

  4. HEV simulation in advisor

    Advisor'da hibrid elektrikli taşıt simülasyonu

    DENİZ ÖZGÜR AKTAŞ

    Yüksek Lisans

    İngilizce

    İngilizce

    2004

    Makine Mühendisliğiİstanbul Teknik Üniversitesi

    Makine Mühendisliği Ana Bilim Dalı

    DOÇ.DR. DOĞAN GÜNEŞ

  5. An integrated decision-making framework for analyzing environmental sustainability of road transport: Case of a school bus fleet serving to a complex urban area

    Karayolu ulaşımının çevresel sürdürülebilirliğinin analizi için bütünleşik bir karar verme çerçevesi: Karmaşık bir kentsel alana hizmet veren bir okul otobüsü filosu örneği

    SERCAN AKTİ

    Yüksek Lisans

    İngilizce

    İngilizce

    2020

    Ulaşımİstanbul Teknik Üniversitesi

    İnşaat Mühendisliği Ana Bilim Dalı

    PROF. DR. HİLMİ BERK ÇELİKOĞLU