Dış alanla etkileşimli kuvantum harmonik salınıcının ileriye doğru evrimi
Başlık çevirisi mevcut değil.
- Tez No: 75476
- Danışmanlar: PROF. DR. METİN DEMİRALP
- Tez Türü: Yüksek Lisans
- Konular: Matematik, Mühendislik Bilimleri, Mathematics, Engineering Sciences
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 1998
- Dil: Türkçe
- Üniversite: İstanbul Teknik Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Mühendislik Bilimleri Ana Bilim Dalı
- Bilim Dalı: Sistem Analizi Bilim Dalı
- Sayfa Sayısı: 55
Özet
20. yy'ın ilk çeyreği fizik dünyasında yeni kapıların aralanmasına ve o zamana değin aydınlanamayan bir takım fiziksel olayların açıklanmasına yardımcı olacak teorilerin ortaya atılmasına şahit olmuştur. Kuvantum teorisinin temelleri bu yüzyılda atılmıştır. Kuvantum mekaniği atomik yapıların davranışlarına açıklık getirmektedir. Kuvantum mekaniğindeki gelişme dış bir alan altında bulunan molekülsel sistemlerin yapılarındaki değişimin nasıl belirleneceğini de açık olarak ortaya koymuştur. Bu çalışmada molekülsel sistem olarak kuvantum harmonik salınıcı alınmış ve bir dış alan altında değişiminin belirlenmesi amaçlanmıştır. Bu amaç doğrultusunda harmonik salınıcının toplam enerjisini karakterize eden Hamiltonyenine, sisteme uygulanan dış alanın potansiyeli eklenerek hareket denklemi (Schrödinger denklemi) oluşturulmuştur. Bu denklem çözülerek sistemin t=0 anından t=T anma kadar olan hareketini ya da diğer bir deyişle ileriye doğru evrimini karakterize eden dalga fonksiyonu w(x,t) bulunmuştur. Tez, aslında, optimal kontrol altında bulunan bir harmonik salınıcımın istenilen belli bir düzeye ulaştırılması için nasıl bir dış alan etkisine alınması amacına yöneliktir. Bu tür problemler ileriye ve geriye doğru evrim bileşenlerine sahiptir. Burada ileriye doğru evrim bileşeni incelenmektedir. Bu doğrultuda, verilen bir dış alan için hesaplama yöntemi geliştirilmektedir Harmonik salınıcıya uygulanan dış alanın genliğinin bilinmemesi halinde problem tam olarak çözülmüş sayılamayacağından genlik E=sabit ve E=coscot alınarak bu tezin üçüncü bölümünde hareket denklemleri oluşturulmuş ve çözülmüştür. E=sabit durumunda hareket denkleminin çözümü aynı zamanda Runge-Kutta yöntemiyle, mathematica dilinde programlanmış ve sayısal sonuçlara ulaşılmıştır. Bu sonuçlar Ek-A'da verilmiştir..
Özet (Çeviri)
The quantum theory was introduced to the world of physics in the first quarter of the 20th century. Until then, ordinary physical phenomena were explained by classical laws and physics was seen as an essentially complete science with little prospect of further developments. However, the classical laws failed to explain the behaviour of objects at atomic level. The study of quantum mechanics was initiated in 1900, the year Max Planck announced the results of his theoretical research into the radiation and absorption of a black body. He proposed that radiant energy was not emitted continuously but discretely (discrete units of light energy called quanta). He developed an equation which fully accounted for this hypothesis. The hv terms in this equation is called a quantum of energy. The constant h = 6,62x1 0"34 j.s is known as the Planck constant. According to Planck's hypothesis, electromagnetic radiation is made of clusters of quanta and each quantum is a particle of energy that can be expressed as: E = hv (2) la equation (2), v is the frequency of the accompanying electromagnetic radiation for that energy. In 1905, Einstein used Planck's hypothesis of quanta to explain the photoelectric phenomenon. He assumed that the energy of light was not distributed over the entire wave front. Instead, light was made from packets of energy quanta. The energy of each photon was E = hv. viaMeasurements made in those years showed that loss of energy in electrons occured in discontinuous quantities. Rutherford, the famous physicist, proved that the atom had a positively charged nucleus in the centre and the nucleus itself had electrons orbiting it. The classical laws of physics dictated that the electrons must emit their energy continuously until their kinetic energy was exhausted. Electrons without energy would then become motionless and fall towards the nucleus, causing atoms to collapse. Since that wasn't the case, other explanations had to be researched. Denmark's Bohr found an answer when he incorporated Planck's quantum theory into Rutherford's atomic model. He proposed that the electrons were restricted to orbits that were fixed in position. According to his theory, electrons do not radiate energy when moving in their fixed orbits, but only when they change orbits. Since the orbits are fixed in position, the radiated energy exists only in fixed quantities. The electrons in the lowest permitted orbit have no lower orbit to change to and since their energy is quantised, they do not gradually spiral into the nucleus. In other words the value hv can only take specific values. Louis de Broglie expanded the scope of all these theories when he proposed that matter, like light or any other type of radiated energy, has both particle and wave characteristics. According to de Broglie there is a relation between the momentum of the particle P, the Planck constant h and the wavelength of the particle that can be expressed as: = T \Wp{t){v{x,t)\Q\y,{x,t)?dt (7) 2 The wave function must satisfy the fundamental equation of quantum mechanics. Consequently Schrödinger equation may be included the cost functional. Therefore we can write the following dynamical constraint; Jdk=k\\ \x\xj) ^0 x ih~H0-ttx)E(t) at y(x,t)dxdt (8) The symbol X*(x,t) represents the complex conjugate of X (x,t). The cost functional itself is given by; J = J0+JE+JDK+Jci (9) The system's optimally controlled motion is determined by the evolution equations. To find the evolution equations, the first variation of the cost functional must be set to zero. This is the procedure used to get the forward evolution equations in the second part of this thesis m^ = [H0+M(x)E(t)]y, (10) -m^ = [H0+^(x)E(t)y (11) The symbol y/* represents the complex conjugate of y/. The E(t) amplitude function in the above equations is the basic agent that needs to be determined. To determine it, the forward and backward evolution equations must be solved and combined. Only then the optimal control problem will become solved. In the third section of this thesis, a quantum harmonic oscillator is examined as a molecular system with a view to determining it's change under external fields. XIThe quantum harmonic oscillator is a system that is commonly used as a model for vibration. However, it is only an approximation to describe the characteristics of vibrating systems. To improve this model, terms not present in the harmonic oscillator must be included as correction terms. The first step in finding the forward evolution equation of a harmonic oscillator is the construction of its Hamiltonian _ -ft2 â2 kx1 2m âc2 2 So the Schrödinger equation of a harmonic oscillator interacting with an external field within dipole polarization approximation is given as..âu/ -h2 d2w kx2 &-%- = - - -Z-+-y + gE(t)xy (14) ât 2m âc' 2 The wave function which determines the system properties through expectation values is assumed to be in the following form y/{x,t) = e-a«)x-a*)x-a*) (15) Hence the Schrödinger equation is solved for the external field's constant and cosot values under this structure. At the end of the thesis the program which is presented in appendix-A is prepared in mathematica. The way which is called Runge-Kutta is used in this mathematica program. This program calculated ax, a,, a3 coefficients of the wave function which characterizes forward evolution of harmonic oscillator. This thesis do not include the backward evolution. Hence, it does not suffice for an optimal control approach where we need to evaluate the external field according to our goals. Here, we assumed that the field is given and seeked the solutions for forward evolution. xii
Benzer Tezler
- Spin-orbit interaction in nanostructures: spin manipulation and transport
Nanoyapılarda spin-yörünge etkileşimi: spin manipülasyonu ve taşınım
BİRCAN GİŞİ
Doktora
İngilizce
2017
Fizik ve Fizik MühendisliğiDokuz Eylül ÜniversitesiFizik Ana Bilim Dalı
DOÇ. DR. SERPİL ŞAKİROĞLU
- Electronic structure of parabolic confining quantum wires with Rashba and Dresselhaus spin-orbit coupling in a perpendicular magnetic field
Dik manyetik alan altında Rashba ve Dresselhaus spin yörünge etkileşimli parabolik kuşatılmış kuantum telinin elektronik yapısı
SEVİL SARIKURT
Doktora
İngilizce
2013
Fizik ve Fizik MühendisliğiDokuz Eylül ÜniversitesiFizik Ana Bilim Dalı
PROF. DR. İSMAİL SÖKMEN
- Ultra-low noise fiber laser systems and their applications
Ultra-düşük gürültülü fiber lazer sistemleri ve uygulamaları
İBRAHİM LEVENT BUDUNOĞLU
Doktora
İngilizce
2014
Fizik ve Fizik Mühendisliğiİhsan Doğramacı Bilkent ÜniversitesiFizik Bölümü
DOÇ. DR. FATİH ÖMER İLDAY
- Robust entanglement in atomic systems
Atom sistemlerinde kalıcı dolaşıklık
ÖZGÜR ÇAKIR
Doktora
İngilizce
2005
Fizik ve Fizik Mühendisliğiİhsan Doğramacı Bilkent ÜniversitesiFizik Ana Bilim Dalı
PROF. DR. ALEXANDER SHUMOVSKY
- The interaction of CD-based chalcogenide quantum dots with raw photosynthetic pigments
İşlenmemiş fotosentetik pigmentler ile CD-içeren kalkojenit kuantum noktaların etkileşimi
SÜMEYYE AYKUT