Üç fazlı sincap kafesli asenkron motorun ansys ve flux2d hazır paket programları ile performansının incelenmesi
Başlık çevirisi mevcut değil.
- Tez No: 75545
- Danışmanlar: PROF. DR. NURDAN GÜZELBEYOĞLU
- Tez Türü: Yüksek Lisans
- Konular: Elektrik ve Elektronik Mühendisliği, Electrical and Electronics Engineering
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 1998
- Dil: Türkçe
- Üniversite: İstanbul Teknik Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Elektrik Bilim Dalı
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 136
Özet
Üç fazlı asenkron motorlar, endüstride yaygın olarak değişik uygulamalarda kullanılmaktadır. Endüstride sarfedilen enerjinin çoğu bu motorlar tarafından tüketilmektedir. Bu motorların performansında yapılacak iyileşmeler, büyük enerji tasarrufu sağlayabilir. Asenkron motorların performanslarını daha iyi bir hale getirebilmek için, manyetik alan dağılım analizleri çok detaylı yapılıp, performansa etki eden motor parametreleri ve etkileri doğru olarak hesaplanmalıdır. Asenkron motor parametrelerinin bulunması ve performansının hesabı için birçok yöntem kullanılabilir. Bunların en güçlüsü sonlu elemanlar yöntemini gerektirmektedir. Bu çalışmanın amacı, çeşitli sonlu elemanlar programlan kullanarak üç fazlı asenkron motor performansını farklı çalışma noktalarında bulmak ve deney sonuçları ile karşılaştırarak en uygun yöntemi önermektir. Yapılan analizlerinde iki boyutlu modeller kullanılmış, üçüncü boyut parametreleri birer sabit olarak elektriksel eşdeğer devre yardımı ile sonlu elemanlar modeline tanıtılmıştır. Analizler için değişik yaklaşımlar ve farklı analiz programları kullanılmıştır. İki boyutlu sonlu elemanlar manyetik alan denklemleri, elektriksel devre denklemleri ile birleştirilip yeni çözüm teknikleri kullanılarak motor performans analizleri yapılmıştır. Elde edilen sonuçlara göre, FLUX2D ve ANSYS programlarının üç fazlı asenkron motorların modellenmesinde ve analiz edilmesinde kullanılabileceği görülmüştür. Geliştirilen yöntemler ile yapılan motor performans hesaplarına göre FLUX2D programı ile elde edilen sonuçlarının test sonuçlarına daha yalan olduğu gözlenmiştir. Yapılan analizler ışığında, gerçek motor performansının elde edilebilmesi için özellikle üçüncü boyutun göz önüne alınmasının gerekliliğini görülmüştür.
Özet (Çeviri)
SUMMARY PERFORMANCE ANALYSIS OF THREE PHASE SQUIRREL CAGE INDUCTION MOTORS WITH ANSYS AND FLUX2D SOFTWARE Three phase induction motors are widely used in industry in various applications. Most of the energy dissipated in the industry are on induction motors. Any improvement on the performance of these motors deliver substantial energy savings. In order to optimise the performance of these motors, it is necessary to be able to compute the magnetic field in detail and then calculate the parameters that effect the performance. Various methods may be employed to analyse the performance of the induction motors. The most powerful method involve finite element analysis. The aim of this study was to develop a method to calculate the performance of a three phase induction motor using two dimensional finite element method at different operating points and to suggest the best solution technique comparing solutions with the test results. Especially the importance of the third dimension effects has been emphasised. Different approaches has been used with different finite element software. Two dimensional finite element magnetic field equations are coupled with the electric circuit equation and solved using new solution algorithms. The finite element analysis of an induction motor can be performed easily using the harmonic (magneto-dynamic) formulation with the following assumptions: the motor is running at steady state and the power supply is sinusoidal. Under this assumptions, the finite element analysis gives very accurate results with short computation time. However harmonic formulation fails when: the harmonics problem cannot be neglected because the rotor motion must be taken into account; an electromechanical transient occurs such as at the start up of the induction motor. Such problems require a time stepping scheme coupled with the rotor motion. Finite element matrix equations, electric circuit equations and electromechanical equations are solved simultaneously at each time step. This formulation is used to simulate and analyse the transient behaviour of the induction motor under all operating conditions. This formulation can also be used to compute the induction motor's performances at constant speed and subjected to harmonics due to the rotor motion. The simulation of three phase induction motors is going to be done by ANSYS and FLUX2D software. With these two software we have the following analysis capabilities: Static Analysis:=> Solve static magnetic field problems which may include saturable materials, permanent magnets, current sources and applied magnetic fields, => Account for both linear and nonlinear materials, Transient Analysis: => Solve problems with arbitrary time varying loadings (current or potential), taking into account saturable materials, conductors, permanent magnets and current sources. Time Harmonic Analysis: => Solve for time harmonic loads (alternating current or applied potential) in problems with materials of constant permeability, current sources and applied magnetic fields. Linear Circuits: => Resistor, inductor, capacitor and mutual inductor coupling with finite element model, => Independent and dependent current and voltage sources. Setting up magnetic problems for solution by computer involves several tasks. First, the geometric shape of the device to be analysed must be described to the computer, and a discrete numerical model must be created which satisfactorily approximates the real device. Next the materials to be used in the analysis must be identified and their properties described. Finally the boundary conditions and the excitation values must be defined before solution. Once the solution is done, the desired output quantities (torque, power, current, etc.) can be obtained in the postprocessing stage. Finite element model creation of three phase induction motors can be classified into following parts: - Geometry modelling - Material description - External circuit connections - Assignment of physical properties - Solution - Postprocessing These parts can be defined in various steps of modelling for different software but they exist in every magnetic analysis software. External circuit connections allow us to simulate the operating conditions of the induction motor with the motor's real power supply connections. In most cases, the induction motor is energised with a voltage source. The external circuit also allow us to model the rotor bar connections like a squirrel cage.Besides the advantage of supplying the finite element model with voltage sources, it is the only way to simulate the end effects in 2D analysis which could only be calculated with 3D analysis. The end effects can be classified as follows: 1. End turns resistance of the stator phase winding 2. End turns inductance of the stator phase winding, 3. Squirrel cage resistance between consecutive bars, 4. Squirrel cage inductance between consecutive bars. A typical external circuit connections for an induction motor is given in Figure 1. FL.UX2D 7,22 CAO-BIBS ra.âa **./!*» dowo f©f» Jfapufi hasun acsk&k ÖATE 0S/22/3Ö %)d*ii'fc*w Figure 1 - External circuit connection for an induction motor In the solution phase, different approaches can be used for different software. In ANSYS the following technique is used to get nonlinear harmonic solutions: This technique requires iterative solutions to consider the non-linearities around the operating point. The iterations are the combination of AC harmonic analysis and static analysis. The procedure is as follows: Step l: Average current values around the operating point is obtained from any analytical software. These current values is used as current sources for the finite element xiimodel. Static analysis is performed and non-linear materials are considered. From the results of this static analysis permeability of each finite element is stored in a file. Step 2: The finite element model used in Step 1 is coupled with the electrical circuit and the permeability obtained for each element is restored as a new material property of the specific element. Now the model is AC harmonic with constant permeability but permeability of each element in the finite element is different from other. AC harmonic solution is done. The stator phase currents and the induced rotor bar currents can be obtained and stored in a file for the next step. Step 3: Static nonlinear analysis is performed again with the phase currents and rotor bar currents obtained in Step 2. And the procedure in Step l is performed again with new current densities. This iterative procedure keeps on going until the desired convergence is satisfied. In FLUX2D the following analysis can be performed:. Magnetodynamic analysis. Constant speed transient analysis. Dynamic transient analysis The methods and solution techniques described above has been applied on two different sample motors which are 90 frame 2 pole 1.5kW (QU90S2A) and 1 12 frame 4 pole 4kW (QU112M4B) motors. The motors are produced in Türk Elektrik Endüstrisi A.Ş. and the tests are done in the laboratories of the company. The results of the two test motors are given in Table 1,2,3,4 respectively for different operating conditions. Table 1: Results of QU90S2Amotor at startup XTable 2 : Results of QU90S2A motor at full load Table 3 : Results of QUI 12M4B motor at start up Table 4 : Results of QUI 12M4B motor at full load With respect to the given results for two different motors, it can be concluded that the analysis technique which is employed with FLUX2D gives closer results when compared to ANSYS solution technique. The deviation of ANSYS results are because of the harmonics due to motion where this effect is included in Flux2D by means of moving air gap. xiv
Benzer Tezler
- Orta güçlü üç fazlı sincap kafesli asenkron motorlarda eksantrik arızanın sonlu elemanlar yöntemi ile tespiti ve analizi
Detection and analysis of eccentric failure in medium power threephase squirrel cage asynchronous motors using finite elementmethod
DAVUT SUN
Yüksek Lisans
Türkçe
2024
Elektrik ve Elektronik MühendisliğiHarran ÜniversitesiElektrik-Elektronik Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ BUKET SONBAŞ COBB
- Raylı sistem uygulamaları için yüksek verimli asenkron cer motoru tasarımı
High efficiency induction traction motor design for railway application
ENES ULU
Yüksek Lisans
Türkçe
2021
Elektrik ve Elektronik MühendisliğiYıldız Teknik ÜniversitesiElektrik Mühendisliği Ana Bilim Dalı
PROF. DR. KAMURAN NUR BEKİROĞLU
- Ranque-hılsch vorteks tüp soğutmalı üç fazlı asenkron makinenin elektriksel parametrelerinin deneysel olarak incelenmesi
Experimental investigation of the electrical parameters of ranque-hilsch vortex tube-cooled three phase asynchronous machine
İSMAİL CEBECİ
Doktora
Türkçe
2023
Makine MühendisliğiBartın ÜniversitesiMakine Mühendisliği Ana Bilim Dalı
DOÇ. DR. VOLKAN KIRMACI
DR. ÖĞR. ÜYESİ SERKAN GÜRKAN
- Üç fazlı sincap kafesli asenkron motorun sıcaklık dağılımının çıkarılması
Obtaining three phase squirrel cage induction motor temperature distribution
EMRAH SALMAN
Yüksek Lisans
Türkçe
2011
Elektrik ve Elektronik Mühendisliğiİstanbul Teknik ÜniversitesiElektrik Mühendisliği Ana Bilim Dalı
PROF. DR. AHMET FAİK MERGEN
- Field oriented control of induction motor by metaheuristic methods
Asenkron motorun metaheuristik yöntemlerle alan odaklı kontrolü
HERSH HASAN TAHA AL DAWOODI
Yüksek Lisans
İngilizce
2023
Elektrik ve Elektronik MühendisliğiKarabük ÜniversitesiElektrik-Elektronik Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ HİLMİ AYGÜN