Geri Dön

Yüksek azot içeren çökeltme ile sertleştirilebilir ostenitik paslanmaz çelikler

Precipitation hardening austenitic stainless steels

  1. Tez No: 83134
  2. Yazar: GÜLHAN TÜYSÜZ
  3. Danışmanlar: DOÇ. DR. MEHMET DEMİRKOL
  4. Tez Türü: Yüksek Lisans
  5. Konular: Makine Mühendisliği, Mechanical Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 1999
  8. Dil: Türkçe
  9. Üniversite: İstanbul Teknik Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Makine Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 99

Özet

ÖZET Günümüzde, daha çok bazı alüminyum alaşımlarında yararlanılan ve bir dayanım artırma yöntemi olan çökeltme sertleşmesi, genelde aşın doymuş katı çözelti oluşturan alaşımların çoğuna uygulanabilir hale gelmiştir. Gelişen imalat teknolojisi ile beraber, azotun, ostenitik paslanmaz çeliklerin akma dayanımı ve korozyon özelliklerinde önemli gelişmeler sağlaması, azot içerikli paslanmaz çeliklere geniş uygulama alam sağlamıştır. Ayrıca bu tür çeliklerin yaşlanabilme özelliği göstermesi de bu malzemelerin talebini arttırmaktadır. Bu çalışmada çökeltme sertleşmesi, yüksek azot içeren yan ostenitik, çökeltme sertleşmesi uygulanabilir bir paslanmaz çelik alaşımına (AM-355) uygulanarak bu işlemin malzemenin mekanik özelliklerine etkisi üzerinde durulmuştur. Azotun ostenitik paslanmaz çelikler üzerindeki yararlı etkileri;. y fazı kararlılığını artırma,. dayanımı artırma (özellikle akma dayanımı),. korozyon direncini iyileştirme, şeklinde özetlenmektedir. Yapılan bu deneysel çalışmada, malzemeye iki farklı sıcaklıkta uygulanan yaşlandırma ısıl işlemleri sonucunda oluşan çökelti yapısının mekanik dayanıma etkisi incelenmiş ve azotun paslanmaz çeliklerde dayanımı artına bir alaşım elementi olarak kullanılabileceği gösterilmeye çalışılmıştır. Bu amaçla farklı yaşlandırma ısıl işlemlerine tabi tutulan malzemeye uygulanan mekanik deneylerle elde edilen veriler ve metalografik inceleme sonuçlan ile AM-355 paslanmaz çeliğinin yaşlandırma işlemi ile yapı ve özelliklerinin nasıl değiştirilebileceği konusuna açıklık getirilmiştir.

Özet (Çeviri)

SUMMARY PRECIPITATION HARDENING AUSTENITIC STAINLESS STEELS As chromium is added to steels, the corrosion resistance increases progressively due to the formation of a thin protective film of Cr2C>3, the so called passive layer. The stainless grades are the most diverse and complex in terms of composition, microstructure and mechanical properties. Chromium is the principal alloying element in a stainless steel, containing %17Cr can be martensitic, ferritic or austenitic, depending on heat treatment and the presence of other elements such as Ni. In discussing the characteristics of stainless steels, it is more convenient to categorize these materials in terms of microstructure rather than composition. Stainless steels are commonly divided into five groups: - Martensitic stainless steel - Ferritic stainless steels - Austenitic stainless steels - Dublex (ferritic-austenitic) stainless steels and - Precipitation - hardening stainless steels. Stainless steels, especially austenitic stainless steels are used in a wide variety of applications because of their good formability and mechanical properties combined with excellent corrosion resistance. The austenitic stainless steels constitute the most widely used type of stainless steel. The influence of the microstructure on the mechanical behaviour of stainless steel is therefore of great interest. Their high alloy content makes these steels expensive and they are used mainly in applications where corrosion resistance or another of their specific properties, oxidation resistance, creep resistance, toughness it low temperature or one of their magnetic or thermal characteristics is of prime importance. It could be found that a change in all physical, mechanical and chemical properties as chromium is added to iron. Among other things, the strength of the iron is increased by alloy additions. However, strengthening by substitutional elements only is not usually very effective. There are three pertinent methods of strengthening stainless steel: a) Work hardening b) Martensitic hardening c) Precipitation hardening XIThe phenomenon of precipitation hardening is the most familiar in aluminum alloys. Precipitation hardening is a principal hardening mechanism in many commercial alloys, including some steels also. Precipitation hardening is based on a fundamental characteristic of solid solutions and the solubility of an alloying element in a solvent metal may decrease as the temperature is lowered. Precipitation hardening stainless steels are martensitic or duplex chromium nickel types containing alloying elements such as carbon or nitrogen which form precipitates during processing. They can be hardened to high strength by levels of successive solution heat treatment and aging, combining very high corrosion resistance and mechanical properties. They are used for gears, fasteners, cutlery and aircraft, steam turbine, jet engine parts. Using carbon as a strengthening interstitial element may lead to corrosion problems because of the tendency to form carbide precipitates with associated local depletion of chromium and resulting sensitization to intergranular corrosion. This disadvantage for carbon in combination with the fact that modern steel making allows the nitrogen concentration to be controlled with high accuracy has made nitrogen very interesting as an alloying element. Apart from its strengthening effect, nitrogen also delays the formations of carbides by reducing the diffusivity of carbon. One primary advantage offered by high nitrogen alloys is high yield and tensile strengths. Nitrogen also is a strong austenite stabilizing element, thereby reducing the Ni required for this purpose. High nitrogen stainless steels are thermally unstable and susceptible to nitride precipitation. In the absence of strong nitride-forming elements such as Al, Ti, V or Nb, Cr precipitation occurs in high nitrogen stainless steels during elevated temperature exposure with sufficient duration. Precipitation hardening is consisting three distinct steps. The first is the solution treatment, second is the quenching and the third is aging treatment. The principles of precipitation hardening are illustrated in Figure 1 schematically. If a two phase alloy of composition X is heated to temperature Ti, the p phase will dissolve into a the phase. If the alloy is then quenched rapidly to room temperature, the a phase will not have time to transform p phase. The resulting alloy will remain single phase and relatively soft with highest unstability. The purpose of the solution heat treatment is to obtain in solid solution the maximum practical concentration of the hardening solutes. The rate of solution formation increases with temperature, because of increased diffusion rate due to thermal activation. Consequently, the most favorable temperature for effecting maximum solution is very near that which melting occurs. But melting must be avoided, because there may be a decrease in both strength and ductility of alloy. xnLIQUID + a a + p 100 A %B Figure 1. Phase diagram of an alloy system which has the capability of precipitation hardening. Quenching is the cooling of alloy from solution temperature at a rate great enough to retain all the second phase in a supersaturated solid solution. The objective of quenching is to preserve as nearly as possible the solid solution formed at the solution heat treating temperature by rapidly cooling to some lower temperature, usually near room temperature. The solute atoms that diffuse to grain boundaries as well as the vacancies that migrate to disordered regions, are irretrievably lost for practical purpose and fail to contribute to the subsequent strengthening. The precipitation or aging treatment requires holding the material at the proper temperature until the desired increase in hardness and strength occurs. Since the supersaturated solution is unstable, there is a definite tendency for the second phase to precipitate. The slip planes are preferred since they have maximum interplanar spacing. As this process continuous, distortion of the planes increases and in effect, inhibits slip along those planes, thus resulting is a stronger alloy. Precipitated structures are highly significant, because they frequently indicate the metallurgical condition of the alloy, its mechanical characteristics and corrosion behaviour. The precipitates are fine particles of phases that were in solution in alloy at an elevated temperature and precipitated from solid solution at a lower temperature. Precipitates form at grain boundaries, dislocations and vacancies. Their size, shape and location depend on the thermal conditions leading to their formation. xmObviously, precipitation and resulting properties are functions of time and temperature of the heat temperature. T3

Benzer Tezler

  1. Synthesis and characterization of magnesium tetraborate-based multifuntional flame retardants and their application for flame retardancy of polyurethane

    Magnezyum tetraborat bazlı çok işlevli alev geciktiricilerin sentezi ve karakterizasyonu ve poliüretanın alev geciktiriciliği için uygulaması

    MUZAFFER GENÇAY ÇELİK

    Doktora

    İngilizce

    İngilizce

    2024

    KimyaOrta Doğu Teknik Üniversitesi

    Kimya Ana Bilim Dalı

    PROF. DR. AYŞEN YILMAZ

  2. Tekstil sanayinde denim kumaş üretiminden çıkan atık sulardaki kirleticiler, arıtımlar ve renk giderilmesi için uygulanan teknolojilere genel bir bakış

    An overview of pollutants in resultant waste water of denim fabric production in textile industry, their purification and technologies applied for color removal from waste water

    MUHAMMED ALHİLEL

    Yüksek Lisans

    Türkçe

    Türkçe

    2022

    Tekstil ve Tekstil MühendisliğiTrakya Üniversitesi

    Uygulamalı Bilimler ve Teknoloji Ana Bilim Dalı

    DOÇ. DR. NİLGÜN BECENEN

  3. Effect of rare earth elements addition on magnetic properties of nickel-zinc ferrites

    Nadir toprak elementleri ilavesinin nikel-çinko ferritlerin manyetik özelliklerine etkisi

    KADİR BORA DEMİREL

    Yüksek Lisans

    İngilizce

    İngilizce

    2024

    Metalurji Mühendisliğiİstanbul Teknik Üniversitesi

    Metalurji ve Malzeme Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ NURİ SOLAK

  4. Energy efficient co-treatment of municipal wastewater and food waste

    Kentsel atıksu ve yemek atıklarının enerji verimli birlikte arıtımı

    HÜSEYİN GÜVEN

    Doktora

    İngilizce

    İngilizce

    2018

    Çevre Mühendisliğiİstanbul Teknik Üniversitesi

    Çevre Mühendisliği Ana Bilim Dalı

    PROF. DR. İZZET ÖZTÜRK

  5. Sabit yataklı biyofilm reaktöründe kırmataş ile evsel atık su arıtma veriminin araştırılması

    Impact of crushed stone on wastewater treatment in fixed bed biofilm reactor

    TAHİR ÖZKAN ÇALKILIÇ

    Yüksek Lisans

    Türkçe

    Türkçe

    2018

    MikrobiyolojiHasan Kalyoncu Üniversitesi

    Çevre Bilimleri ve Enerji Yönetimi Ana Bilim Dalı

    PROF. DR. MEHMET KARPUZCU