Geri Dön

Türkçe e-ticaret ürün yorumlarının sınıflandırılması

Classification of Turkish e-commerce product reviews

  1. Tez No: 833548
  2. Yazar: BURCU MELİS TOPRAK
  3. Danışmanlar: DOÇ. DR. SELDA GÜNEY
  4. Tez Türü: Yüksek Lisans
  5. Konular: Elektrik ve Elektronik Mühendisliği, Electrical and Electronics Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2023
  8. Dil: Türkçe
  9. Üniversite: Başkent Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Elektrik-Elektronik Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Elektrik Elektronik Mühendisliği Bilim Dalı
  13. Sayfa Sayısı: 85

Özet

Günümüzde e-ticaret ürün incelemeleri, çevrim içi alışverişte oldukça önemli bir rol oynamaktadır. Teknolojinin hayatımızdaki önemi ve çevrim içi alışverişe olan yoğun ilgi nedeniyle ürün yorumları ürünü satın alma aşamasında oldukça önemlidir. Ürüne verilen puanlar ve yazılan yorumlar arasında zaman zaman uyumsuzluk yaşanmaktadır. Bu nedenle yazılan yorumların metin sınıflandırma kullanılarak gruplandırılması ile ürün hakkında daha objektif değerlendirilme sağlanacağı düşünülmektedir. Metin sınıflandırmada oldukça kullanışlı ve etkili olan denetimli ve denetimsiz makine öğrenimi algoritmalarının yanı sıra derin öğrenme algoritmaları da oldukça popülerdir ve başarı oranları yüksektir. Bu tez çalışmasının amacı, Türkçe metin sınıflandırması için farklı makine öğrenmesi yöntemlerinin başarılarını incelemektir. Kullanılan veri setinde, çevrim içi alışveriş sitelerinde bir ürün altına yapılan yorumlar toplanmış ve yorumların olumlu, olumsuz ya da nötr olmasına göre sınıf etiketleri verilerek veri seti oluşturulmuştur. Toplam 15170 yorumun yer aldığı veri setinde 6799 olumlu, 6978 olumsuz ve 1393 tarafsız yorum bulunmaktadır. Sınıflandırma aşamasında, bu tez çalışmasında sınıflandırıcı olarak Evrişimsel Sinir Ağı (ESA) önerilmiştir. Ayrıca önerilen yöntem, Karar Ağaçları, Lineer Diskriminant Analiz, Uzun Kısa Süreli Bellek, İkinci Dereceden Diskriminant Analiz, Çift Yönlü Uzun Kısa Süreli Bellek, Verimli Lineer Destek Vektör Makineleri, Geçitli Tekrarlayan Birim, Verimli Logistik Regresyon, Naif Bayes, K-En Yakın Komşu, Birleşik Modeller, Yapay Sinir Ağları, Kernel ve Destek Vektör Makineleri ile karşılaştırılmıştır. En yüksek başarı Evrişimsel Sinir Ağları kullanıldığında %90,77 doğruluk ile elde edilmiştir.

Özet (Çeviri)

Nowadays, e-commerce product reviews play a very important role in online shopping. With the importance of technology in our lives and the intense interest in online shopping, the classification of these comments with text classification quite important. In addition to supervised and unsupervised machine learning algorithms, which are very useful and effective in text classification, deep learning algorithms are also very popular and have high success rates. The aim of the study is to provide a brief overview of machine learning methods for text classification. In the data set used, the comments under a product on online shopping sites were collected and a dataset was created by giving class labels according to whether the comments were positive, negative or neutral. There are 6799 positive, 6978 negative and 1393 neutral comments in the data set, which includes a total of 15170 comments. In the classification phase, Convolutional Neural Network (CNN) is proposed as a classifier. Also the proposed method is compared with Decision Trees, Linear Discriminant Analysis, Long Short Term Memory, Quadric Discriminant Analysis, Bidirectional Long Short Term Memory, Efficient Linear Support Vector Machines, Gated Recurrent Unit, Efficient Logistic Regression, Naive Bayes, K-Nearest Neighbor , Ensemble Models, Artificial Neural Networks, Kernel and Support Vector Machines. The highest success was obtained with 90.77% accuracy when using Convolutional Neural Networks.

Benzer Tezler

  1. Makine öğrenmesi ile e-ticaret ürün yorumlarının analizi

    Analysis of e-commerce product reviews with machine learning

    MÜJDAT ÇABUK

    Yüksek Lisans

    Türkçe

    Türkçe

    2023

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolManisa Celal Bayar Üniversitesi

    Yazılım Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ FATİH YÜCALAR

    DR. ÖĞR. ÜYESİ MANSUR ALP TOÇOĞLU

  2. E-ticaret sistemlerinde yapılan ürün yorumlarının metin madenciliği uygulaması ile incelenmesi

    Analysis of product comments are examined in e-commerce systems with text mining application

    GÖKAY YILMAZ

    Yüksek Lisans

    Türkçe

    Türkçe

    2021

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Aydın Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    PROF. DR. ZAFER ASLAN

  3. Metin madenciliği teknikleri kullanılarak Türkçe müşteri yorumlarının sınıflandırılması

    Classification of customer comments in Turkish using text-mining techniques

    VELİ CENGİZ

    Yüksek Lisans

    Türkçe

    Türkçe

    2023

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolİSTANBUL BEYKENT ÜNİVERSİTESİ

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ TALAT FİRLAR

  4. Sosyal medyada online tüketici yorumlarının performansını öngörme

    Predicting the performance of online consumer reviews in social media

    ESRA DEMİROĞLU

    Yüksek Lisans

    Türkçe

    Türkçe

    2021

    Bilim ve TeknolojiGebze Teknik Üniversitesi

    Strateji Bilimi Ana Bilim Dalı

    PROF. DR. HÜSEYİN İNCE