Geri Dön

Yol ağındaki yapısal kusurların küresel ölçekli otomatik yol kusur tespit sistemi ile belirlenmesi ve sınıflandırılması

Identification and classification of structural defects in the road network using a global scale automatic road defect detection system

  1. Tez No: 843997
  2. Yazar: ÖMER KAYA
  3. Danışmanlar: DOÇ. DR. MUHAMMED YASİN ÇODUR
  4. Tez Türü: Doktora
  5. Konular: Trafik, Ulaşım, İnşaat Mühendisliği, Traffic, Transportation, Civil Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2023
  8. Dil: Türkçe
  9. Üniversite: Erzurum Teknik Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: İnşaat Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 314

Özet

Yol ağları farklı üstyapı tasarımları ile oluşturulmaktadır. Genel olarak dünyada en çok kullanılan üstyapı türü olarak esnek kaplama tercih edilmektedir. Bu üstyapıya sahip yol ağları; yol altyapısının hazır olmaması, bitümlü karışımlarda kullanılan bitümün uygulama alanı ile uyumsuzluğu, agrega bitüm oranında yapılan hatalar, döküm sıcaklığı, yetersiz silindir işlemi, kalifiyesiz eleman, mevsimsel değişkenlikler, kar ve buz ile mücadele yöntemleri, trafik hacmi, yetersiz bakım ve onarım süreçleri gibi nedenlerden dolayı bozulmalar yaşamaktadır. Bu bozulmalar zaman içerisinde farklı formlar alarak yol kusurlarını oluşturmaktadır. Kusurların belirlenme süreci yol kaplamasının verimliliği ve trafik bileşenleri için çok önemlidir. Bu tez çalışmasında esnek üst yapılı yol ağlarında meydana gelen yol kusurlarının otomatik olarak belirlenmesi ve sınıflandırılması süreci akıllı bir sistem ile gerçekleştirilmiştir. Sekiz farklı ülkeden elde edilen yol görüntüleri ve 10 farklı yol kusuru çalışma kapsamında dikkate alınmıştır. Kusurlarının algılanma sürecinde YOLOv5, YOLOv7 ve YOLOv8 algılama modelleri kullanılmıştır. Ayrıca farklı ülkelerden oluşan veri seti kapsamında küresel ölçekli otomatik yol kusur belirleme sistemi geliştirilmiştir. Geliştirilen sistemin bir prototip olduğu ve yol ağlarında meydana gelen kusurların gerçek zamanlı olarak algılama ve sınıflama yeteneğine sahiptir. Belirlenen kusurların konum bilgileri de elde edilerek sistemin yol ağı sorumluları için kılavuz olacağı açıktır. Geliştirilen sistem ile yol kusurlarının algılanması, sınıflandırılması ve yerlerinin belirlemesi yol ağlarının bakım ve onarım sürecini hızlandıracağı gibi hizmet ömrünü de uzatacaktır. Yol ağını kullanan trafik bileşenlerinin yol güvenliği ve konforu da artırılmış olacaktır. Sonuç olarak bir akıllı ulaşım sistemleri uygulama biçimi olan araç-altyapı (V2I) iletişim örneği tez kapsamında sunulmuştur.

Özet (Çeviri)

Road networks are created with different pavement designs. In general, flexible pavement is preferred as the most used superstructure type in the World. Road networks with this superstructure suffers from degradation due to these; due to reasons such as lack of proper road infrastructure, incompatibility of bitumen used in bituminous mixtures with the application area, errors in aggregate bitumen ratio, casting temperature, insufficient roller operation, unqualified personnel, seasonal variations, methods of combating snow and ice, traffic volume, inadequate maintenance and repair processes. These degradations take different forms over time and create road defects. The process of identifying defects is very important for the efficiency of the road pavement and traffic components. In this thesis study, the process of automatic detection and classification of road defects occurring in flexible superstructure road networks was carried out with an intelligent system. Road images obtained from eight different countries and 10 different road defects were taken into consideration within the scope of the study. YOLOv5, YOLOv7 and YOLOv8 detection models were used in the detection process of defects. In addition, a global-scale automatic road defect detection system has been developed within the scope of a data set consisting of different countries. The developed system is a prototype and has the ability to detect and classify defects occurring in road networks in real time. It is clear that the system will be a guide for road network managers by obtaining location information of the identified defects. Detecting, classifying and locating road defects with the developed system will accelerate the maintenance and repair process of road networks and also extend their service life. Road safety and comfort of traffic components using the road network will also be increased. As a result, an example of vehicle-infrastructure (V2I) communication, which is a form of intelligent transportation systems application, is presented within the scope of the thesis.

Benzer Tezler

  1. The study of colorimetric pH probe and optical detection of heme attachment to cyt C by using genetically encoded indicators in living cells

    Kolorimetrik pH ölçer çalışması ve genetikle kodlanan floresan indikatörlerle sitokrom C konformasyonlarının belirlenmesi

    MEHMET YUNUS GENCEROĞLU

    Yüksek Lisans

    İngilizce

    İngilizce

    2022

    Biyolojiİstanbul Teknik Üniversitesi

    Moleküler Biyoloji-Genetik ve Biyoteknoloji Ana Bilim Dalı

    DOÇ. DR. HALİL BAYRAKTAR

  2. Okullardaki güç mesafesinin lider üye etkileşimi üzerine etkisi

    The effect of power distance on leader member exchange in schools

    ÖMER GÜL

    Doktora

    Türkçe

    Türkçe

    2019

    Eğitim ve ÖğretimEskişehir Osmangazi Üniversitesi

    Eğitim Bilimleri Ana Bilim Dalı

    DOÇ. DR. İLKNUR ŞENTÜRK

  3. Alkylacrylamide-based semi-interpenetrating networks for temperature-sensitive smart systems

    Sıcaklığa duyarlı akıllı sistemler için alkilakrilamid bazlı yarı iç içe geçmiş ağyapılar

    BİRGÜL KALKAN

    Yüksek Lisans

    İngilizce

    İngilizce

    2022

    Kimyaİstanbul Teknik Üniversitesi

    Kimya Ana Bilim Dalı

    PROF. DR. NERMİN ORAKDÖĞEN

  4. Integrated corridor management operation strategies

    Entegre koridor yönetiminin işletme stratejileri

    RUBA SAFI ABDULLAH

    Yüksek Lisans

    İngilizce

    İngilizce

    2018

    Trafikİstanbul Teknik Üniversitesi

    İnşaat Mühendisliği Ana Bilim Dalı

    PROF. DR. ALİ OSMAN ATAHAN

  5. Mekansal-zamansal hasta hareketlilik verileriyle mekansal etkileşim örüntülerinin analizi ve akış haritaları aracı tasarımı ve geliştirilmesi

    Analysis of spatial interaction patterns using spatio temporal patient mobility data, and designing and developing a flow mapping tool

    SELMAN DELİL

    Doktora

    Türkçe

    Türkçe

    2019

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik Üniversitesi

    Bilişim Uygulamaları Ana Bilim Dalı

    PROF. DR. RAHMİ NURHAN ÇELİK