Geri Dön

Farklı taşıyıcı sistemlere sahip binaların deprem performansının karşılaştırılması

Seismic performance evaluation and comparision of different structural systems using nonlinear time history analysis

  1. Tez No: 945864
  2. Yazar: VOLKAN İVGEN
  3. Danışmanlar: PROF. DR. KONURALP GİRGİN
  4. Tez Türü: Yüksek Lisans
  5. Konular: İnşaat Mühendisliği, Civil Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2025
  8. Dil: Türkçe
  9. Üniversite: İstanbul Teknik Üniversitesi
  10. Enstitü: Lisansüstü Eğitim Enstitüsü
  11. Ana Bilim Dalı: İnşaat Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Yapı Mühendisliği Bilim Dalı
  13. Sayfa Sayısı: 373

Özet

Deprem etkisi altındaki yapıların güvenliğinin sağlanması, yapı mühendisliği disiplininin temel hedeflerinden biridir. Bu bağlamda, yapıların sismik performansının doğru bir şekilde değerlendirilmesi hem mevcut yapı stokunun iyileştirilmesi hem de yeni yapı tasarımlarında güvenli ve ekonomik çözümlerin geliştirilmesi açısından büyük önem taşımaktadır. Yapının sismik davranışını etkileyen birçok parametre bulunmakla birlikte, seçilen taşıyıcı sistemin türü yapının genel deprem performansı üzerinde belirleyici bir rol oynamaktadır. Yapının boyutlandırılmasında seçilen farklı taşıyıcı sistemler, yapının ağırlığını, doğal titreşim periyotlarını ve katlar arası göreli yer değiştirmelerini farklı biçimlerde etkileyebilir. Bu nedenle, taşıyıcı sistem seçiminde yalnızca mimari ve ekonomik kriterler değil, aynı zamanda yapısal performans da dikkate alınmalıdır. Çalışmanın temel amacı, farklı taşıyıcı sistemlerin yapının genel sismik performansı üzerindeki etkilerini karşılaştırmalı olarak analiz etmek ve uygulamacı mühendislere sayısal veriler sunarak taşıyıcı sistem seçimine yardımcı olmaktır. Bu sistemler arasındaki performans farklılıklarını ortaya koymak amacıyla, doğrusal olmayan zaman tanım alanında analiz yöntemi kullanılmıştır. Bu yöntem sayesinde, yapının gerçek deprem etkileri altındaki dinamik tepkileri daha ayrıntılı şekilde gözlemlenebilmiştir. Yapıların deprem etkisi altındaki performansları, bölgede meydana gelebilecek en büyük deprem yer hareketi düzeyine karşılık gelen DD-1 deprem düzeyine göre üç boyutlu olarak değerlendirilmiştir. Analizlerde, taşıyıcı sistem elemanlarının şekil değiştirme düzeyleri, katlar arası göreli deplasmanlar, perde elemanlarına gelen kesme kuvvetleri katlara gelen kesme kuvvetleri ve yapıların enerji sönümleme kapasiteleri gibi yapı parametreleri incelenmiştir. Taşıyıcı sistemlerin yapı performansına olan etkisinin anlaşılabilmesi için Mahmutbey/İstanbul'da konumlandığı kabul edilen bodrum + 8 kattan oluşan kat yüksekliği 3.5 m olmak üzere kirişli döşeme sistemi, kirişsiz döşeme sistemi ve çevresel kirişlerle desteklenmiş kirişsiz döşeme sistemi olmak üzere farklı taşıyıcı sistemlere sahip 3 bina TBDY 2018 ve TS500'de belirlenen tasarım ilkelerine uygun olarak boyutlandırılmıştır. Ardından yapıların deprem performansı eleman ve sistem bazında değerlendirilmiş ve karşılaştırılmıştır. Eleman ve sistem bazında elde edilen sonuçlara dayanılarak kirişli döşemeli binanın diğer iki binaya göre deprem performansının daha yüksek olduğu belirlenmiştir. Ayrıca kirişsiz döşemeli bir binanın çevresine eklenen kirişlerin yapının deprem performansına olumlu katkı sağladığı ortaya çıkarılmıştır.

Özet (Çeviri)

Ensuring the safety of structures under seismic effects is one of the fundamental objectives of structural engineering. In this context, accurately assessing the seismic performance of buildings is of great importance, both for improving the existing building stock and for developing safe and economical solutions in the design of new structures. Different structural systems can influence the building's weight, natural vibration periods, and inter-story drifts in various ways. Therefore, in the selection of the structural system, not only architectural and economic criteria but also structural performance should be considered. In other words, the type of structural system plays a decisive role in overall performance. Structural systems directly affect structural behavior as integral parts of both vertical and lateral load-bearing systems. Especially under lateral loads such as those induced by earthquakes, the effects of structural systems on stiffness, mass distribution, and lateral load transfer become particularly significant. To better understand the impact of structural systems on structural performance, three buildings hypothetically located in Mahmutbey/Istanbul—each with a basement and eight above-ground stories—were analyzed. These include a structure with a beam-slab system, one with a flat slab system, and another with a flat slab system with perimeter beams. The basement is designated for car parking area and the upper floors designed to function as a residential. Each story has a height of 3.5 meters, including the basement, resulting in a total building height of 24.5 meters above ground level. The building has an orthogonal structural system with five spans in the X-direction and three spans in the Y-direction, each eight meters long. The total building dimensions are 40 and 24 meters in the X- and Y-directions, respectively. C35 concrete grade and B420C reinforcement steel are used. Building is designed by considering design earthquake level whose probability of exceedance in 50 years is 10% in accordance with the Turkish Seismic Code for Buildings (TSCB) 2018. The local soil class in the area where the buildings are located is ZC. The design spectral accelerations for the region obtained from Turkish earthquake hazard map. The values for Sds and Sd1 are 1.112 and 0.389, respectively. Dead and live loads are determined in accordance with TS 498. The lateral load resisting system is identical in all three structural types, with the same dimensions, layouts, and configurations. Three different column sizes are utilized in the design: 80x40 cm, 40x80 cm, and 80x80 cm. Two U-shaped core shear walls with a thickness of 30 cm are located at the center. The basement is surrounded by 30 cm thick rigid shear walls. The thickness of the slab varies according to the structural system: 20 cm for the beam-slab system, and 27 cm for both the flat slab system and the flat slab system with perimeter beams. The buildings were designed in accordance with the structural design principles outlined in the Turkish Seismic Code for Buildings (TSCB) 2018 and TS500. Modeling the behavior of the structural components is essential for performing the nonlinear analysis. Accordingly, confined and unconfined concrete models, along with reinforcement steel models, are employed in compliance with the specifications of TSCB 2018. The concrete material properties are defined according to TSCB 2018 which is adopted Mander model. Distributed plasticity model is used for the columns and shear walls, meanwhile lumped plasticity model is used for the beams. Therefore, Fiber P-M2-M3 and Fiber P-M3 are defined for the columns and shear walls, respectively. M3 hinges are defined for the beams subjected to flexure only. The shear walls are modeled with confined boundary zones and an unconfined web. The beams are modeled by using stiffness modification factor obtained from moment-curvature relationships. Slabs and basement walls are modeled elastically by using the corresponding stiffness modification factor for flexural and shear, as per TSCB 2018. The nonlinear time-history analysis was performed using 11 pairs of earthquake records, in accordance with TSCB 2018. The records are selected based on fault type, seismicity, and the soil class of the region. Consequently, the selected records have magnitudes ranging from 6.6 to 7.5 and shear wave velocities (Vs,30) between 360 and 760 m/s, with strike-slip fault type. The records are obtained from the PEER NGA West 2 database. The selected records are scaled to the Maximum Considered Earthquake (MCE) using a simple scaling method, ensuring that the mean spectrum remains above the 1.3 times of target (MCE) spectrum in the range of 0.2Tp to 1.5Tp. The acceleration time history records of the selected ground motions are applied to the model in both X and Y horizontal directions. Initially, the X- and Y-components of the ground motion are applied to the corresponding directions of the building. The analysis is then repeated with the components rotated 90 degrees to assess the building's seismic response. The main objective of this study is to comparatively analyze the effects of different structural systems on the overall seismic performance of the buildings and to contribute to the structural design process based on the findings. The analyses focused on parameters such as the deformation levels of structural elements, interstory drifts, and the energy dissipation capacities of the buildings. The results indicate that the structural system is not merely a load-bearing element but also a critical component that shapes the dynamic performance of the structure. The evaluations made within this scope serve as a valuable guide for engineering applications. Seismic performance is evaluated based on the TSCB 2018, which defines performance objectives such as Immediate Occupancy (IO), Life Safety (LS), and Collapse Prevention (CP). Deformation limits are set for each level, and the nonlinear analysis results are compared against these thresholds. Additional shear checks are performed on reinforced concrete elements to refine the performance assessment. Average deformations are compared with the predefined thresholds to evaluate the performance of each structural system under the MCE. This comparative analysis provides an in-depth understanding of the building's response to seismic forces and allowed for an evaluation of the structural systems ability to resist seismic effects. The seismic performance of the buildings was evaluated and compared in two stages: element-based and system-based assessments. Element-based assessment is performed by considering the deformation values observed in the structural members. Results show that the seismic performance of the building with the beam-slab system is higher compared to the other two buildings. System-based assessment is performed by using various parameter: interstory drift ratio, story forces, shear forces acting on shear walls, top displacement. Based on the comparison made using the interstory drift ratios, it was found that the interstory story drift ratio of the building with the beam-slab system and the flat slab system supported by perimeter beams were calculated to be close to each other. In contrast, the building with the flat slab system exhibited relatively larger story drift values compared to the other two. The addition of perimeter beams to a flat slab system has contributed to reducing the relative story drifts by increasing the lateral stiffness of the system, thereby making its behavior more similar to that of the beam-slab building. Although the TSCB 2018 does not specify a clear limit for interstory drift ratio for buildings except for the buildings in high-rise category, the interstory drift threshold for high-rise building is adopted for evaluation, with a value of 0.03. According to the results obtained, the interstory drift ratios for all three buildings are below the limit. Based on the evaluation considering the top displacements of the buildings, similar results were obtained for the beam-slab system and the flat slab system with perimeter beams, while the largest top displacement values were observed in the flat slab system. In the light of given results, it can be emphasized that the presence of beams in the structural system helps to limit displacements. Based on the evaluation of the shear force values acting on the floors and the shear forces carried by the shear walls, it was concluded that the building with the beam-slab system is more favorable in terms of shear wall safety compared to the other two buildings. In summary, the beam-slab structural system demonstrated better performance under seismic loads compared to the other two buildings. In the flat slab system without beams, the direct transfer of seismic loads to the shear walls hindered the balanced distribution of these loads, negatively affecting the seismic performance of the structure. The addition of perimeter beams to the flat slab system improved the seismic performance of the building and contributed to limiting deformations. The findings obtained from the comparative analyses reveal that the building with the beam-slab structural system demonstrated the best seismic performance. The performance of this building, which was designed in accordance with TSCB 2018, was investigated in the context of the devastating earthquake that occurred on February 6, 2023, with its epicenter in Pazarcık (Kahramanmaraş), Türkiye. Based on the results of the performance analysis conducted for the sample structure, it was observed that the design—carried out using the design accelerations provided in the Turkish earthquake hazard map —was inadequate in terms of seismic performance when subjected to such a major earthquake.

Benzer Tezler

  1. The investigation of the 25 percent rule in concentrically brace frame dual system with special moment frame

    Merkezi çaprazlı ve moment aktaran çerçeveli karma sistemlerde %25 kuralının incelenmesi

    SAMET KILIÇ

    Yüksek Lisans

    İngilizce

    İngilizce

    2015

    İnşaat Mühendisliğiİstanbul Teknik Üniversitesi

    İnşaat Mühendisliği Ana Bilim Dalı

    YRD. DOÇ. DR. CÜNEYT VATANSEVER

  2. Burulma düzensizliği içeren betonarme yapıların doğrusal elastik yöntem ile deprem performansının değerlendirilmesi

    Performance evaluation of existing reinforced concrete buildings with torsional irregularities subjected to earthquakes by linear elastic method

    KUTAY ŞABAN DUMAN

    Yüksek Lisans

    Türkçe

    Türkçe

    2011

    Mühendislik BilimleriYıldız Teknik Üniversitesi

    İnşaat Mühendisliği Ana Bilim Dalı

    DOÇ. DR. GÜRAY ARSLAN

  3. Nonlinear behavior of reinforced concrete slabs of tall buildings

    Yüksek yapılarda betonarme döşemelerin doğrusal olmayan davranışı

    AGİT DEMİR

    Yüksek Lisans

    İngilizce

    İngilizce

    2025

    Deprem MühendisliğiYeditepe Üniversitesi

    İnşaat Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ EREN VURAN

  4. Farklı taşıyıcı sisteme sahip betonarme yüksek binaların deprem performanslarının incelenmesi

    Seismic performance evaluation of tall buildings with different structural system

    FARUK DADAŞ

    Yüksek Lisans

    Türkçe

    Türkçe

    2017

    İnşaat MühendisliğiYıldız Teknik Üniversitesi

    İnşaat Mühendisliği Ana Bilim Dalı

    DOÇ. DR. BARIŞ SEVİM

  5. Yüksek katlı kompozit tübüler sistemlerin davranışının teorik olarak incelenmesi

    Theoretical investigation of the behavior of high-rise steel tubular systems

    FUAT TAŞ

    Doktora

    Türkçe

    Türkçe

    2025

    İnşaat MühendisliğiKonya Teknik Üniversitesi

    İnşaat Mühendisliği Ana Bilim Dalı

    DOÇ. DR. GÜNNUR YAVUZ