(2n+1)-boyutlu küre yüzeyinin kontakt yapısı ve D-homotetik dönüşümler yardımıyla eğrilerin incelenmesi
Analysis of curves by means of D-homothetic transformations and contact structures of (2n+1)-dimensional sphere
- Tez No: 958991
- Danışmanlar: DOÇ. DR. ŞABAN GÜVENÇ
- Tez Türü: Yüksek Lisans
- Konular: Matematik, Mathematics
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2025
- Dil: Türkçe
- Üniversite: Balıkesir Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Matematik Ana Bilim Dalı
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 48
Özet
Dört bölümden oluşan bu tezde, Sasakian manifoldların D-homotetik dönüşümleri ele alınarak, bu dönüşümlerin Frenet eğrileri üzerindeki etkileri incelenmiştir. Küre yüzeyinin Sasakian yapısı detaylı olarak ele alınmış, bulunan sonuçlar 3-boyutlu birim küre üzerindeki Legendre ve slant geodezik eğrilere uygulanmıştır. Ayrıca, küre dışında bir Sasakian manifold üzerinde de örnekler verilmiştir. Birinci bölüm giriş bölümüdür. İkinci bölümde, daha sonraki bölümlerde kullanılacak olan temel kavramlar ve tanımlar verilmiştir. Üçüncü bölüm, tezin esas kısmını oluşturmaktadır. Bu bölümde, Sasakian manifoldların D-homotetik dönüşümleri tanımlanarak eğriler üzerindeki etkilerine odaklanılmıştır. Bulunan sonuçlar çeşitli Sasakian manifoldlar üzerinde uygulanmıştır. Son bölüm olan dördüncü bölümde ise genel bir değerlendirme yapılarak, bulunan sonuçların gelecek çalışmalara nasıl ışık tutacağına değinilmiştir.
Özet (Çeviri)
This thesis, consisting of four chapters, explores the D-homothetic transformations of Sasakian manifolds and examines their effects on Frenet curves. The Sasakian structure of the sphere is studied in detail, and the obtained results are applied to Legendre and slant geodesic curves on the 3-dimensional unit sphere. Additionally, examples are provided on a Sasakian manifold other than the sphere. The first chapter is the introduction. In the second chapter, the fundamental concepts and definitions that will be used in the following chapters are presented. The third chapter is the main part of the thesis. In this chapter, D-homothetic transformations of Sasakian manifolds are defined, and their effects on curves are examined. The obtained results are applied to various Sasakian manifolds. In the final chapter, a general evaluation is made and it is discussed how the results of this thesis can guide future studies.
Benzer Tezler
- Nearly 𝛼−kosimplektik manifoldlar
Nearly 𝛼−cosymplectic manifolds
DİLEK DEMİRHAN
Yüksek Lisans
Türkçe
2020
MatematikKaramanoğlu Mehmetbey ÜniversitesiMatematik Ana Bilim Dalı
DR. ÖĞR. ÜYESİ GÜLHAN AYAR
- Bir ve iki boyutlu ayrık kosinüs dönüşümü
Discrete cosine transform
HAKAN TOKAY
Yüksek Lisans
Türkçe
1993
Elektrik ve Elektronik Mühendisliğiİstanbul Teknik ÜniversitesiDOÇ.DR. MELİH PAZARCI
- Reidemeister torsion of closed π-manifolds
Kapalı π-manifoldların Reidemeister torsiyonu
ESMA DİRİCAN ERDAL
Doktora
İngilizce
2022
Matematikİzmir Yüksek Teknoloji EnstitüsüMatematik Ana Bilim Dalı
PROF. DR. YAŞAR SÖZEN
DOÇ. DR. FATİH ERMAN
- Sonlu boyutlu minkowski uzaylarında fokal eğriler ve fokal yüzeyler
Focal curves and focal surfaces in finite dimensional minkowski space
HAKAN ŞİMŞEK