Geri Dön

Multiattribute indexing using multidimensional data structures

Multiattribute ındexing using multidimensional data structures

  1. Tez No: 382778
  2. Yazar: YUSUF GARBA DAMBATTA
  3. Danışmanlar: YRD. DOÇ. DR. ARMAĞAN ÖZKAYA
  4. Tez Türü: Yüksek Lisans
  5. Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2014
  8. Dil: İngilizce
  9. Üniversite: Mevlana Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Bilgisayar Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 60

Özet

Many applications involve searches using values of several of their attributes. Indexes are well-known data structures utilized to improve the performance of searches for data. A multiattribute index has advantages over several single-attribute indexes. First, the clustering of index terms reduces the number of I/O access needed for the search. Second, multiattribute index requires single update when new record is inserted. Several data structures have been used for multiattribute key index. B+-tree is commonly used as multiattribute key index, but has the disadvantage that it does not allow search on some of the attributes from the multiattribute key. Grid File allows search on all the attributes from the multiattribute key while restricting the keys in the index to only contain uniform values. Insertion and deletion can also be difficult on grid files. There has been previous work that uses R-trees for indexing purposes where the emphasis was on spatial data. The research in this thesis focuses on the relational data which exploits relational databases and the use of multidimensional data structures to perform multiattribute key indexing. It examines how to employ R-trees to perform multiattribute indexing such that the order of attributes is no more important for queries. Data records with multiattribute keys are modeled as multidimensional data to be indexed by means of a multidimensional data structure, specifically an R-tree. This will enable a relational database system to perform queries using any one of the attributes or any of their combination. It is hereby shown how a multiattribute key index implemented by an R-tree facilitates retrieval of records from database in response to search conditions based on any of the attributes forming the key or any combination thereof. An improvement on R-tree is then presented where regions do not overlap and n-dimensional signatures are incorporated into nodes of the tree for effective filtration of irrelevant tree nodes during searches. Algorithms for search (point, range and similarity), insertion, and deletion operations are also provided.

Özet (Çeviri)

Many applications involve searches using values of several of their attributes. Indexes are well-known data structures utilized to improve the performance of searches for data. A multiattribute index has advantages over several single-attribute indexes. First, the clustering of index terms reduces the number of I/O access needed for the search. Second, multiattribute index requires single update when new record is inserted. Several data structures have been used for multiattribute key index. B+-tree is commonly used as multiattribute key index, but has the disadvantage that it does not allow search on some of the attributes from the multiattribute key. Grid File allows search on all the attributes from the multiattribute key while restricting the keys in the index to only contain uniform values. Insertion and deletion can also be difficult on grid files. There has been previous work that uses R-trees for indexing purposes where the emphasis was on spatial data. The research in this thesis focuses on the relational data which exploits relational databases and the use of multidimensional data structures to perform multiattribute key indexing. It examines how to employ R-trees to perform multiattribute indexing such that the order of attributes is no more important for queries. Data records with multiattribute keys are modeled as multidimensional data to be indexed by means of a multidimensional data structure, specifically an R-tree. This will enable a relational database system to perform queries using any one of the attributes or any of their combination. It is hereby shown how a multiattribute key index implemented by an R-tree facilitates retrieval of records from database in response to search conditions based on any of the attributes forming the key or any combination thereof. An improvement on R-tree is then presented where regions do not overlap and n-dimensional signatures are incorporated into nodes of the tree for effective filtration of irrelevant tree nodes during searches. Algorithms for search (point, range and similarity), insertion, and deletion operations are also provided.

Benzer Tezler

  1. Koşut çoklu ortam bilgi gösterim ve erişim dizgesi

    Parallel multimedia information representation and retrival system

    ADİL ALPKOÇAK

    Doktora

    Türkçe

    Türkçe

    1997

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolEge Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    PROF. DR. SITKI AYTAÇ

  2. Multiattribute utility model based decision support system for organizational career management

    Organizasyonel kariyer yönetimi için çok ölçütlü fayda modeline dayanan bir karar destek sistemi

    ESRA TANTEKİN

    Yüksek Lisans

    İngilizce

    İngilizce

    1998

    Endüstri ve Endüstri MühendisliğiOrta Doğu Teknik Üniversitesi

    Endüstri Mühendisliği Ana Bilim Dalı

    DOÇ. DR. EROL SAYIN

  3. A Multiattribute decision making approach to the choise of a nuclear power plant type

    Nükleer reaktör seçiminde çok kriterli karar analizi yaklaşımı

    ZİYA ARTAM

    Yüksek Lisans

    İngilizce

    İngilizce

    2002

    Nükleer MühendislikBoğaziçi Üniversitesi

    Nükleer Mühendislik Ana Bilim Dalı

    PROF. DR. VURAL ALTIN

  4. Çok ölçütlü sorun çözümüne yönelik bir bütünleşik karar destek modeli

    Integrated decision aid model for multiattribute problem solving

    YUSUF İLKER TOPÇU

    Doktora

    Türkçe

    Türkçe

    2000

    Endüstri ve Endüstri Mühendisliğiİstanbul Teknik Üniversitesi

    PROF. DR. FÜSUN ÜLENGİN

  5. Multi attribute performance ranking and choosing the best technique of pathological computerized image analysis techniques

    Patolojik skorlama sistemlerinde çok ölçütlü performans sıralaması ve en iyi yöntemin seçilmesi

    ESRA AYDIN

    Yüksek Lisans

    İngilizce

    İngilizce

    2004

    İstatistikDokuz Eylül Üniversitesi

    İstatistik Ana Bilim Dalı

    YRD. DOÇ. DR. CAN CENGİZ ÇELİKOĞLU