Bir sanayi yapısının yangın dayanımının artırılması ve maliyete etkisinin araştırılması
Increasing the fire resistance of an industrial building and researching the effects on cost
- Tez No: 39717
- Danışmanlar: PROF.DR. TEVFİK SENA ARDA
- Tez Türü: Yüksek Lisans
- Konular: İnşaat Mühendisliği, Civil Engineering
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 1994
- Dil: Türkçe
- Üniversite: İstanbul Teknik Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Belirtilmemiş.
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 136
Özet
ÖZET Yangın olağan boyutdaki bir yapı için bile çok tehlikeli bir olaydır. Ülkemiz de dahil olmak üzere birçok ülkede konutlar ve iş yerleri yanıp, kullanılmaz hale gelmekte ve milyarlarca liralık maddi hasarlar oluşmaktadır. Yapıyı oluşturan ana malzeme ne olursa olsun, bütün yapılar yangından etkilenir. Ahşap ve gergisiz kargir yapılar bir kenara bırakılırsa, hemen hemen bütün yapı cinsleri taşıyıcı olmalarını büyük ölçüde çeliğe borçludurlar. Diğer taraftan çelik akma gerilmesi ile elastisite modülü gibi üstün mekanik özelliklerini sıcaklıkla kaybeden bir malzemedir. Hatta 600°C 'ye varıldığında tüm bu özelliklerin sıfıra düştüğü söylenebilir. Yapıyı oluşturan elemanların, yüklenme mertebesi, yük şekli ve mesnetlenme koşullarına göre birer kritik sıcaklık değerleri vardır. Kritik sıcaklık kısaca elemanı veya sistemi göçme sınır durumuna götüren sıcaklık değeridir. Taşıyıcılıkları çeliğe bağlı olan sistemler kritik sıcaklığa ulaştıklarında büyük şekil ve yer değiştirmeler gösterirler. Kirişler ve kolonlar için bu kritik sıcaklık değerleri ve bu sıcaklığa geliş süreleri bulunur. Çok küçük değerler taşıyan bu zamanlar korunmamış yapının yangın dayanımını gösterirler Yapı elemanlarının bu kritik sıcaklığa ulaşmalarını engellemek veya geciktirebilmek maksadıyla korunma yollarına gidilir. Ele alınan, boyuna doğrultuda 40m ve enine doğrultuda 21 m olan iki katlı sanayi yapısında sistem düşey ve yatay yükler için boyutlandırılmış, yatay yüklere karşı dayanımını arttırabilmek için kararlılık bağları ile güçlendirilmiştir. Taşıyıcı sistemi çelik ağırlıklı olan bu yapıda kiriş ve kolonların kritik sıcaklık değerleri ve bu sıcaklıklara geliş süreleri hesaplanmış ve bulunan bu süreyi arttırmak için uygun bir koruma tipi olan yalıtım seçilmiştir. Alçının, ısı yalıtımı açısından iyi özellikler taşıması yalıtım malzemesi olarak kullanılmasını uygun kılmıştır. Kirişlerde yalıtım kalınlığının fazla olmaması sebebiyle alçı panolar ile kutuya alma yöntemi uygulanmış, kolonlar ise alçı pano kalınlığının fazla çıkması sebebiyle tel üstü alçı sıva yöntemi ile yalıtılmıştır. Yalıtım kalınlığı 2 saatlik bir dayanım sağlıyacak şekilde belirlenmiştir. Yalıtımın ardından yapılan maliyet analizleri sonucunda kaba inşaat maliyeti ve yalıtımlı kaba inşaat maliyeti kıyaslanmış, sadece %3 'lük bir maliyet artışı olduğu saptanmıştır.
Özet (Çeviri)
SUMMARY INCREASING THE FIRE RESISTANCE OF AN INDUSTRIAL BUILDING AND RESEARCHING THE EFFECTS ON COST Almost in every country, fires in buildings and structures cause damage to the economy of country because of the loss of life and goods. There are some researches about effects of fire on a structure. Majority of these researches are made by developed countries. In the light of these researches, it can be said that the financial losses which are because of fires (excluding the forest fires) are almost equal to %1 of GNP (Gross National Product). At the designing level of structure, it's possible to minimize this loss by taking measures and obeying the prescriptions. In the design of structures, earthquake is taken into account; similarly, fire resistance must also be taken into account, before they are built. For this purpose, almost every country in the world, there exists some prescriptions and regulations. These regulations consist the passive defenses. These passive defenses should be suitable for the structure of building. These regulations also consist the active defense that should be suitable from the point of the view of the fire extinguishing equipment. Passive precautions are basically a planning matter and must be considered at a very early stage in the building design. One of the basic precautions at the planning stage is the subdivision of the building, both horizontally and vertically, into fire-tight cells. The other one is siting in relation to other buildings to reduce fire spread. The other point which must also be considered is the method of construction to provide adequate fire resistance in the structural elements and the selection of materials which will neither contribute to fire spread nor suffer huge damage. Smoke and toxic products of combustion are not only a menace to life, but also represent a severe handicap to fire-fighters. Therefore adequate and correctly controlled ventilation is an important aspect of passive fire precaution planning. It can be said that good passive fire precautions represent good VIplanning, good design and strong construction. In many cases, they can be complementary to the other basic functions of a building. On the other hand, active fire precautions represent a necessary addition to the services of a building. One of such services is the installation of alarms and detectors to give a warning of an outbreak of fire. The other one is the installation of equipment for automatic fire extinction, such as sprinklers, carbon dioxide flooding systems and high expansion foam and first-aid fire-fighting appliances. It is also important, in this context, to provide adequate and suitable facilities to assist the fire service. To a certain degree, a balance may be struck between passive and active fire precautions. In this study only one part of the passive precautions is examined. The aim of this thesis is increasing the fire resistance of an industrial building, and comparing the cost of the building which is insulated with the cost of non-insulated one. A two storeyed industrial building is used in this thesis. This building is 40 m long and 21 m width. The building is created with eight spanned simple beams at longitudinal direction and three spanned rigid frames at transverse direction. All spans at longitudinal directions are 5 m, the ones at transverse directions are 7 m. The first floor is 4.5 m height, and the second one is 4 m height. The thickness of all slabs is 12 cm. In the design of the building, steel columns and composite beams are used. The section used in beams is NPI type, and used in columns is IP type. Reinforced concrete in which BS-20 and BÇ-I are used becomes more important when beams are composite type. In the columns and beams, St37 profiles are used. The slabs of first, second, and the roof storeys are made of reinforced concrete. In order to analyze the rigid frames, a digital computer.which uses the displacement method, is used for the calculation of the vertical load. The analyze of the simple beams at the other direction can be easily done. All the horizontal loads at the longitudinal direction are carried by the bracing wall. For bracing wall beams lateral buckling calculations VIIare done and the sections were enlarged. At the other direction, the displacement method is applied. The result of structural analysis are used for determining the dimension of members of structure. In the calculations of composite beams, plastic method is used. During the calculations, vertical loads increased by a load factor of 1.7 in the composite solution. After all these calculations and analysis, calculations about fire resistance was begun. It should be kept in mind that the fire resistance is the time that an element of structure, i.e. a wall, floor, door, column or beam, will continue to function when subjected to heating in a prescribed manner designed to simulate actual fire conditions. The calculation of fire resistance contains two steps. The first step is to find the critical temperature of elements. And the second one is to find the time required to reach this critical temperature of these elements. (One should consider that all the member of structure is steel.) The critical temperature can be found by the ratio, osyjlosv given in Appendix C. OsyT^sy 's a function of some variables. These variables are We, Wp, q*, qe, x, $, N*. Nk, nk. Where q* is the load effected on structure, qe is maximum load that can be carried elasticity at 20°C, x is the constant related to the level of load, ^ is a constant related to the extra loading capacity, N* is the axial force effected during the fire, Nk = As.asy.nk, nk is non dimensional buckling curves at elevated temperature. The most effective factor of finding the time required to reach this critical temperature is temperature of surroundings. ATS, temperature difference in At can be found by the following equation: AT.-a^.M.d.-T,).* Ps,cs v In a loop algorithm, when the sum of ATs's reaches the critical temperature, the corresponding time can be found. This time is the VIMfire resistance of element without any protection. From these results, It's seen that the fire protection is strongly needed. The cubical extent of the building is 7140 m3. Therefore, a two hours fire resistance is acceptable for this building, after fire protection. The fire protection is applied after erection of frame and takes the form of an insulting barrier between the steel and fire to slow down the transfer of heat. As an insulating material plaster of Paris is used. The reason why this material is chosen response of the perfect insulating properties. At the three sides of beams (excepted the slab faced) plane plasters are used as a fire protection. On the other hand, for columns expended metal lating can be wrap around the steel to form a key plaster. This is particularly useful where a complex steel framing is to be protected. The first step of calculations of the insulation, the following criterion is used: cs.ps.V > 2.c,p,d,Ui If this criterion is achieved, this insulation is light-insulation, else heavy-insulation. For light insulation, with a moisture content of 0%, ATS, temperature difference in At can be found by the following equation: ^s=-JVv-(Tt-Ts)-At In a loop algorithm, when the sum of ATs's reaches the critical temperature (which is in two hours) the corresponding thickness of insulation (dj) can be found. In the last session, the cost of construction with and without insulation is compared, and found that there is only 3% difference between them. IXIt is true to say that this aspect is the most difficult to analyze in the field of fire protection. To study the matter fully it is necessary to look at the whole question of fire economics which unfortunately is not, at the present time, a profitable exercise as many of the facts and figures necessary to establish a true balance sheet cannot easily be assessed in monetary terms. To establish all the assets or advantages which can accrue from fire prevention expenditure and balance them against the liabilities is highly desirable but a brief review of the problem will show how difficult this is. The heaviest financial losses from fire occur in manufacturing sector of the economy. And the problem becomes more complex in this case. Therefore, it is more meaningful to take the example in industrial buildings. If a manufacturing plant catches fire and burns out, there is the loss of the structure and its contents, as well as the loss of earnings which may or may not be covered by insurance. There is also the loss of suffered by the inability of the firm concerned to supply the goods on order which means either delay in delivery or purchasing. These losses are extremely difficult to quantify since while in the first instance, they are the concern of the manufacturer, eventually the country as a whole may lose national assets and valuable export markets. It could be said that we are spending too much money but as has been pointed out there are many factors on the credit side of the balance sheet which are at present almost impossible to estimate. We have, therefore, to accept what appears to be a high cost figure but must endeavor to ensure that the methods we employ for fire protection are fully effective and that by continuing research into fire problems, new and more efficient methods of fire control are evolved and used.
Benzer Tezler
- Yangın güvenliği düzenlemelerinin mimariye etkisi: Tarihi New York Kiralık Evler örneği
Impact of fire safety regulations on architecture: A case study of Historic Tenement Houses in New York
BURÇİN YENİCE
Yüksek Lisans
Türkçe
2024
MimarlıkYıldız Teknik ÜniversitesiMimarlık Ana Bilim Dalı
DOÇ. DR. EZGİ KORKMAZ
- Bir ve iki yönlü fonksiyonel kademelendirilmiş plakalarda meydana gelen hasarların peridinamik teorisi kullanılarak incelenmesi
Investigation of damages in one- and two- dimensional functionally graded plates using peridynamic theory
İBRAHİM OLMUŞ
Yüksek Lisans
Türkçe
2022
Makine MühendisliğiErciyes ÜniversitesiMakine Mühendisliği Ana Bilim Dalı
DOÇ. DR. MEHMET DÖRDÜNCÜ
- Domates kabuğu ekstraktı kullanılarak PLA temelli biyokompozit gıda ambalaj filmi üretilmesi ve karakterizasyonu
Production and characterization of PLA-based biocomposite food packaging film using tomato peel extract
ERİNÇ KOÇAK
Doktora
Türkçe
2023
Gıda MühendisliğiEge ÜniversitesiGıda Mühendisliği Ana Bilim Dalı
DOÇ. DR. ÖZLEM ESMER
- Bor karbür katkılı PMMA (polimetil metakrilat) polimerkompozitlerin ATRP metodu ile sentezi ve karakterizasyonu
Synthesis and characterization of boron carbide additived PMMA (polymethyl methacrylate) polymer composites by ATRP method
DUYGU TULUK TÜRKMANİ
Yüksek Lisans
Türkçe
2023
Metalurji Mühendisliğiİstanbul Teknik ÜniversitesiMetalurji ve Malzeme Mühendisliği Ana Bilim Dalı
PROF. DR. CÜNEYT ARSLAN
PROF. DR. NİLGÜN BAYDOĞAN
- Enhancement of interfacial properties for high performance polyethylene fibers produced via gel spinning
Jel çekme yöntemi ile üretilen yüksek performanslı polietilen liflerin arayüz özelliklerinin geliştirilmesi
OĞUZ KAĞAN ÜNLÜ
Yüksek Lisans
İngilizce
2023
Polimer Bilim ve Teknolojisiİstanbul Teknik ÜniversitesiPolimer Bilim ve Teknolojisi Ana Bilim Dalı
DOÇ. DR. ALİ KILIÇ