Geri Dön

Cisim genişlemeleri ve origami çizimleri

Field extensions and origami constructions

  1. Tez No: 557849
  2. Yazar: BURCU ŞANSAN
  3. Danışmanlar: DOÇ. DR. ERGÜN YARANERİ
  4. Tez Türü: Yüksek Lisans
  5. Konular: Matematik, Mathematics
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2019
  8. Dil: Türkçe
  9. Üniversite: İstanbul Teknik Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Matematik Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Matematik Mühendisliği Bilim Dalı
  13. Sayfa Sayısı: 71

Özet

Japonca bir kelime olan“origami”; oru - katlamak ve kami- kağıt birleşiminden oluşur. Kağıt ile yapıldığı için kağıdın icadıyla doğal olarak ortaya çıktığı düşünülüyor. Göçlerle birlikte kağıt ve kağıt katlama Çin' den Japonya' ya, Kore' ye; ipek yoluyla Avrupa' ya yayılmış. Origaminin canlanması 20. yy da ya¸sayan Akire Yoshizawa ( 1911-2005) tarafından katlama işaretlerini geliştirmesiyle hız kazandı. Bilinen klasik origami haricinde daha karmaşık modeller üretilmeye başlandı. Dekorasyondan güneş panellerine, robotikten hava yastıklarına kadar birçok katlama günlük hayatta yerini alıyor. 1990 yıllarından sonra modern origami matematikçilerin de ilgisini çekmeye başladı. Bu dönemde geliştirilen origami aksiyomları ile geometrik, cebirsel, denklem çözümleri, hata payı fonksiyonları gibi detaylarda akademik çalışmalar yapılmaya başlanmıştır. Robert Lang tarafından geliştirilen treemaker yazılımı ile origami modellerindeki katlamaların izlerinin algoritması çözümlenmiştir. Bu sayede daha karmaşık modellerin yapılması artmış; diğer yandan da teknolojik ve endüstriyel tasarımların üretilmesine yol açmıştır. Japon bilgisayar mühendisi Tomohiro Tachi, OSME 6 sempozyumundaki konuşmasında herşeyin origamisi yapılır mı sorusuna uzun araştırmalardan sonra evet cevabını vermiş, peki herşeyi origami ile yapan makine olur mu sorusuna da düşünmeden evet cevabını vermiştir. Origaminin geldiği noktayı kısaca bu cümle özetliyor. Origami, günümüzde çeşitli branşlarda ele alınıyor. Matematik, ürün tasarımları, uzay araştırmaları, mimari, tekstil, biyoloji gibi ana başlıklar verebiliriz. Bu tez, bir inceleme çalışması olup, pergel cetvel çizimleri ve cisim genişlemeleri arasındaki ilişkilerin benzerlerinin, kağıt katlamaları ve cisim genişlemeleri arasında da olduğunu göstermeyi amaçlıyor. Tez çalışmasında geometrik çizimler sorularına origami ile çözüm aradık. İlk bölümde Yunanlı matematikçilerin geometrik sorularını ele aldık. Pergel-cetvel ile hangi şekil ve çizimlerin yapılabildiği, hangisinin imkansız olduğunu nedenleriyle inceledik. İkinci bölümde benzer soruların origami ile çözümlerini araştırdık. Huzita aksiyomlarını kullanarak pergel-cetvel ile yapılan geometrik şekilleri oluşturduk. Origami çizilebilir sayıları tanımladık ve bunları cisim genişlemeleri ile ilişkilendirdik. Üçüncü bölümde katlanabilir origami hakkında geliştirilen origami teoremlerine yer verdik. Katlanabilir origami kavramı genellikle hareketli tasarımların alt yapısını oluşturuyor. Tez okuyucusuna cebirsel olarak bilgi verecek olan bu çalışma ile origami ile diğer açık sorulara çözüm bulma fırsatı verebilir.

Özet (Çeviri)

Origami is a Japanese compound word, from oru meaning“folding”and kami meaning“paper,”and refers to the art of paper folding. Japanese origami crane is most famous of all origami models, international symbol of peace. It is believed that it originated naturally following the invention of paper. Paper and paper-folding spread from China to Japan and Korea and, via the Silk Road, to Europe through migrations. The revitalization of origami accelerated when a system of notation for origami ( dotted lines and arrows) was developed by Akira Yoshizawa (1911 - 2005) in the 20th century. The standard for origami instructions in which valley folds are indicated by dashes line and mountain folds are indicated by chain line. These origami instructions are known by world widely and become origami language. This led to the creation of complicated models that go beyond conventional origami, and many such folds enter daily life in a range of areas from decoration to solar panels to robotics to airbags today. In the 1990s, modern origami began to strike the attention of mathematicians. The origami axioms developed during this period enabled the conduct of academic study relating to details such as geometry, solutions of algebraic equations and approximation method of error functions. Origami has an real geometry that s natural subject of study. The oldest origami math book was 1840 by Rev. Dionysius Lardner, which demonstrated geometric rules by folding paper. Other book was 1893 by Sundra Row, which was more impacted by compass, ruler and paper folding. In 1936, origami was analyzed in terms of geometric constructions, using compass and ruler according to set of axioms by Piazzolla. This study might be first contribution to“origami mathematics”. In 1985 Humiaki Huzita and Benedetto Scimemi presented origami 6 axioms at the First International Meeting of Origami Science and Technology. Those six operations became known as the Huzita axioms. The Huzita axioms provided the first formal description of what types of geometric constructions were possible with origami. The algorithms of folding patterns in origami models were analyzed using TreeMaker, a software developed by Robert Lang. This not only allowed for more complicated models to come into abundance, but at the same time it brought about the production of technological and industrial designs. In a speech he delivered during the 6th OSME symposium, Japanese computer scientist Tomohiro Tachi answered yes in reference to his long research on whether it is possible to make origami out of everything and a definite yes to the question of whether a machine is possible that does everything through origami. This briefly summarizes the current state of origami. Origami is covered in a variety of areas such as mathematics, product design, space research, architecture, textiles, and biology today. This is a survey thesis and it aims to show that relationships that resemble those between compass and ruler constructions and field extensions hold between paper folds and field extensions. The present thesis seeks for answers to questions about geometric constructions through origami. The first chapter covers the geometrical problems of Greek mathematicians. It examines which shapes and drawings are possible using the compass and the ruler and which are not and why. Three geometrical problems in particular, often referred to as the Four Classical Problems, and all to be solved by purely geometric means using only a straight edge and a compass. They were“the squaring of the circle”,“the doubling of the cube”,“the trisection of an angle”and“regular polygon”. These problem' s actual solutions had to wait until the 19th Century. In 1837 Wantzel showed that trisecting an angle and doubling a cube by straightedge and compass were not always possible. In 1882 Lindemann showed that squaring the circle was impossible with straightedge and compass when he showed that p transcendental over Q . The second chapter searches for solutions to similar problems through origami. The results are surprisingly different from ruler and compass geometry. Firstly we give basic definitions and theorems of field theory. It uses the Huzita axioms to form geometrical shapes otherwise drawn using the compass and the ruler. Six main folding method were developed by Huzita- Justin which allow constructions with circles and lines. We showed that Three Classical Problems are solvable by Origami axioms. The ability to trisect an angle shows that origami axioms are stronger than compass and ruler. 5th axiom folds a point to a line over a crease. Because the point reflects across the crease, its distance to the crease is the same as the distance from the crease to reflected point. This shows that the crease is tangent to the parabola whose focus is point and whose directrix is the line. We can use a parabola to construct square roots with origami. It is clear that the creases in 6th axiom is tangent to two parabolas. Finding a common tangent between two parabolas can be equivalent as solving cubic equations. By the way we showed that 5th axiom and 6th axiom are not available at special conditions. Additionally dividing n equal part method is explained. We show that cubic equations can be solved using origami folding. It defines origami construction numbers and associates them with field extensions. The third chapter deals with the theorems of origami that have been proposed regarding flat foldable origami. The concept of flat foldable origami lays the groundwork for moving designs. What is the difference between with origami and flat foldable origami? Origami models could be 1D, 2D or 3D. But flat foladable origami has some special differences which are its paper is zero thickness and the folded form is flat. They called this model of origami flat foldable origami. Flat foldable origami has also been applied to other fields such as science and technology. Flat foldable origami methods are used at solar panels in space, airbag at cars, self moving cells, robotic engineering, furniture designs, enlarging fabric by body, architectural surfaces. It has also been the inspiration of mathematical research into the properties of folded shapes. Toshikazu Kawasaki, Jacques Justin and Jun Maekawa established several fundamental theorems for single flat folded vertex. These theorems are introduced in this chapter. The conclusions part, we give some future researches by add new opportunities. Origami doesn't allow to cutting, using glue. We can give further studies by cutting paper or using tracing paper. These ways make origami solutions more powerful than traditional origami solutions. The present study offers an algebraic account of origami and may provide an opportunity for finding solutions to other open questions. In addition, origami is worth studying and exploring in other math related fields. For example, there is a connection between origami and topology, differential geometry, even to graph theory, something that we don't usually assume origami would associate with.

Benzer Tezler

  1. Cisim genişlemeleri ve Galois grupları

    Başlık çevirisi yok

    EKREM KADIOĞLU

    Yüksek Lisans

    Türkçe

    Türkçe

    1986

    MatematikAtatürk Üniversitesi

    Matematik Ana Bilim Dalı

    DOÇ. DR. MUSTAFA BAYRAKTAR

  2. Düzgün onyedi köşelinin pergel ve cetvelle inşası

    Construction of a regular 17-gon by compass and ruler

    BAHADDİN SİNSOYSAL

    Yüksek Lisans

    Türkçe

    Türkçe

    1995

    MatematikKaradeniz Teknik Üniversitesi

    Matematik Ana Bilim Dalı

    PROF. DR. ERGÜN BAYAR

  3. Fuzzy cisim genişlemeleri

    Fuzzy fields extensions

    NESLİHAN YILMAZ

    Yüksek Lisans

    Türkçe

    Türkçe

    2020

    MatematikRecep Tayyip Erdoğan Üniversitesi

    Matematik Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ ÜMİT DENİZ

  4. Değerlendirmelerin rezidül transandant genişlemeleri

    Başlık çevirisi yok

    FİGEN BAYAZ

    Yüksek Lisans

    Türkçe

    Türkçe

    1992

    MatematikTrakya Üniversitesi

    Cebir ve Sayılar Teorisi Ana Bilim Dalı

    YRD. DOÇ. DR. HÜLYA İŞCAN

  5. Değerlendirilmiş cisimlerin genişlemeleri ve değerlendirilmiş cisimler üzerinde bazı asallık kriterleri

    Extensions of valued fields and some irreducibility criterions over valued fields

    YÜCEL YILMAZ

    Yüksek Lisans

    Türkçe

    Türkçe

    2015

    MatematikTrakya Üniversitesi

    Matematik Ana Bilim Dalı

    DOÇ. DR. FİGEN ÖKE