Geri Dön

Enerji korunumu, iklimsel konfor ve inşaat maliyetleri açısından uygun bina kabuğunun seçilmesi

The choice of the building envelope according to the energy conservation, thermal comfort and construction cost

  1. Tez No: 66727
  2. Yazar: MAHMUT OĞUZ BEYAZIT
  3. Danışmanlar: PROF. DR. ZERRİN YILMAZ
  4. Tez Türü: Yüksek Lisans
  5. Konular: Mimarlık, Architecture
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 1997
  8. Dil: Türkçe
  9. Üniversite: İstanbul Teknik Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Mimarlık Ana Bilim Dalı
  12. Bilim Dalı: Yapı Bilgisi Bilim Dalı
  13. Sayfa Sayısı: 112

Özet

ÖZET Enerji korunumu, iklimsel konfor ve inşaat maliyetleri açısından uygun bina kabuğunun seçilmesi üzerine bir çalışma yapılmıştır. Enerji korunumu ve iklimsel konfor açısından uygun k katsayısı tespit edilerek, bu kritere uygun kabuk alternatiflerinin birim maliyetleri ve toplam maliyete etkileri incelenerek uygun kabuğun seçilmesi üzerine bir yöntem geliştirilmiştir. Bu yöntemin oluşturulmasındaki amaç enerji kaynaklarına olan ihtiyacın arttığı bu günlerde enerji korunumu ve iklimsel konfor açısından en uygun ve en ekonomik kabuk alternatifin belirlenmesi yolu ile inşaat maliyetlerini düşürmektir. Bölüm 1'de, yapılan çalışmayla ilgili kısa bir bilgi verilecek enerji korunumu ve iklimsel konfor açısından uygun kabuk alternatifinin inşaat maliyetlerini düşürecek şekilde tasarlanıp, seçilmesi hedefi belirtilmektedir. Bölüm 2'de, enerji kullanımını ve korunumunu zorunlu kılan faktörler hakkında bilgi verilerek bu faktörlerden en önemlisi olan iklimsel konfor gereksinmelerinden bahsedilmiştir. İklimsel konforu etkileyen en önemli tasarım parametreleri.Yer. Bina aralıkları. Binanın yönü. Binanın formu. Bina kabuğu optik ve termofiziksel özellikleridir. İklimsel konforu etkileyen en önemli tasarım parametresi olan bina kabuğu optik ve termofiziksel özellikleri detaylı bir şekilde incelenmiştir. Bölüm 3'de enerji korunumu ve iklimsel konfor açısından uygun bina kabuğunun seçilmesi yer almaktadır. Bina kabuğunun termofiziksel özelliklerinin ve k katsayısının belirlenmesi ve belirlenen k katsayısına uygun farklı kabuk alternatiflerinin tasarlanması üzerinde durularak, tasarlanan kabuk alternatiflerinin maliyetleri Bayındırlık ve iskan Bakanlığı 1996 yılı, inşaat birim fiyatları ile hesaplanmış ve en uygun olanının seçimi yapılmıştır. Bölüm 4'de, Bölüm 3'de anlatılan yöntem, İstanbul ilindeki Doğu - Batı yönünde yerleşmiş, 2580 m2 kapalı alana sahip, 2 katlı bir ofis binası örnek alınarak uygulanmıştır. Bu çalışmada kullanılan yöntem sonucunda ortaya çıkan grafikler uygun bina kabuğunun seçiminde büyük kolaylık sağlamaktadır. vnı

Özet (Çeviri)

SUMMARYS In this study, the choice of the building envelope according to the energy conservation, thermal comfort and construction costs is introduced. By fixing the overall heat transfer coefficient which is suitable for energy conservation and thermal comfort the different building envelope alternatives are designed. A method which can choose the best suitable building envelope alternative according to not only the unit costs but also the total costs of the construction as well. The aim of this method is, to decrease the construction costs by choosing the best suitable bulding envelope according to the energy conservation and thermal comfort, in these days which we all need of the energy sources deeply. In chapter 1, a general explanation about the study is given from the point of the aim of the choice of the building envelope according to the energy conservation, thermal comfort and construction costs. In chapter 2, the main factors which make energy utilization and conservation compulsary are described with pointing at the climatic comfort requirements which is the best important factor of the energy utilization and conservation. The most important design parameters affecting thermal comfort are :.site. distance between buildings. orientation of building. building form. thermophysical and optical properties of building envelope The thermophysical and optical properties of building envelope are given detailly in this chapter. If we all summarize the important design parameters affecting thermal comfort: Orientation of buildings is one of the important factors effecting indoor climate, the solar radiation intensity on the external surface of building elements varies with orientation. IXSolar radiation properties of the building envelope are;. absorbtivity,. transmissivity,. reflectivity. For opaque components, transmissivity is not valid. The main thermophysical properties of the building envelope are;. overall heat transfer coefficient, (which is the most important parameter of this study). transparency ratio. Total heat loss or heat gain change with building form. Building form can be defined basing on the shape factor of the building, building height, roof type and roof slope. Buildings work as wind and sun obstructions for each other. The optimum value of the distance between buildings, changes with slope angle of the site, slope orientation, of buildings and building heights. In chapter 3, the choise of the suitable building envelope according to the energy conservation and thermal comfort is given. The thermophysical properties and overall heat transfer coefficent are fixed and by fixing these, parameters, the different building envelope alternatives are designed for the cost calculations of both the units and the total. At the end of these steps the best suitable building envelope alternative can be chosen clearly. If we point at the method for the determination of the optimum values of the thermophysical properties which consists of 3 main steps:. Determination of the optimum values of overall heat transfer coefficient for the opaque component.. Development of the opaque component alternatives.. Evaluation of the opaque component alternatives from the standpoint of condensation risk. Determination of the optimum values of the overall heat transfer coefficient for the opaque component comprises the following steps: - Gathering the Regional Climatic Data of design- Selection of the characteristic Days of design To minimize the supplementary mechanical energy demand, the optimum value of the overall heat transfer coefficient for opaque components should be determined according to the climatic conditions of the predominant period of the region. Instead of repeating the calculations for each day of the chosen predominant period it is convenient to choose a representative design day. - Determination of the Indoor Design Conditions of design Indoor design conditions can be derived from the comfort conditions. The indoor climatic elements are air temperature, relative humidity, air velocity and inner surface temperatures. The comfort values of air temperature can be estimated by using the relationship between required value of the inner surface temperature ( iyo) and the comfort value of indoor air temperature ( i). The following formula represents the relationship between surface and air temperatures since it is proper to set the relationship between thermal comfort and building envelope. liyo = ti + £ where, e : permissible limit value for the difference between inner surface temperature and the comfort value of indoor air temperature, °C. - Selection of Variation Range and Intervals of the Design Parameters Affecting Indoor Climate. - Computation of the Sol-Air Temperatuers for Opaque and Transparent Components. Hourly values of sol-air temperatures influencing the variously orientated opaque components and windows (eoo and eco respectively) should be calculated separetely. Daily average sol-air temperature for opaque components ^eoo) and windows ( eco) are the arithmetic mean of hourly values. XI- Calculating the Required Values of the Inner Surface Temperature of the Opaque Component. The weighted average inner surface temperature of the opaque and transparent components relevant to the transparency ratio, should be equal to ( i-e) for the design days of underheated period. This can be expressed by the following formula: fyo^oio (1-x) + lcio.x where, *iyo : required value of the inner surface temperature of building envelope,°C. x : transparency ratio. Hourly values of the inner surface temperature for the transparent component can be calculated by means of the following formula : tci = tj + I kc (ec - ti) - (Fs.lD.XD+ly. Ty) I / 0C| where, td : handy values of the inner surface temperative for the transparent component, °C. kc. overall heat transfer coefficient of the transparent component, W/m2 °C, Kcal/ m2 h°C. t ec : sol-air temperature for window, °C. Id, iy : direct and diffuse solar radiation intensities on the surface, respectively, W/m2, Kcal/ m2h. td, Ty : transmissivity of the glass for direct and diffuse solar radiation, respectively. Fs : sunlit fraction of the transparent component surface. The daily average value ( cio) is the arithmetic mean of the hourly values. Xll- Determination of the Optimum Values of the Overall heat Transfer Coefficient for the Opaque Component. The optimum value of the overall heat transfer coefficient ( o) can be calculated by using the following equation; 0= CCı ( oio- i) ( eoo - i) o : overall heat transfer corfficent of the opaque component, W/m2oC, k.cal/m2h°C. eoo : daily average sol-air temperature for the opaque components, °C i : comfort value for indoor air temperature, °C For different o values alternatives for opaque components can be produced. But some of these alternatives should be eliminated after analyzing the condensation risk. Evaluation of the various building envelope alternatives (combinations of iç o and transparency ratio) can be carried out by calculating the heat loss per unit area of alternative and comparison of the heat loss amounts. Hourly heat loss per unit area of building envelope can be calculated in two different ways: - Under the“real sky”conditions, the amounts of the hourly heat loss per unit area of building envelope can be calculated by basing on tho sol-air temperatures. - In the second way of heat loss calculations are based on the outdoor air temperatures enforced by the Chamber of Mechanical Engineers. After the comparison of the amounts of hourly heat losses the combination of the values of thermophysical properties which provides the minimum heat/loss ratio is qualified as the most appropriate one. XlllFor all opaque component alternatives which are developed by basing on the chosen o and transparency ratio combinations, the condensation risk should be examined. As the result of these calculations and evaluations, combinations of appropriate values related to the thermophysical properties of the building envelope that indicate optimum performance in respect to achieving climatic comfort, energy conservation and elimination of the condensation risk can be determined. After fixing of the suitable overall heat transfer coefficient, the different building envelope alternatives are designed. Both the oldest and the newest technological materials can be used in the building envelope alternatives. The unit costs of the building envelope alternatives and the total cost of the construction are calculated by the construction unit costs of 1 996 prepared by the Minister/ of construction, Prosperity and Settlement. By means of the calculations of the unit and total cost the most suitable building envelope alternative can be chosen for decreasing the construction costs. In chapter 4, the method that is introduced in chapter 3 is used for an office building in Istanbul which oriented at the east-west direction and has the space of 2580m2 with two flats. The graphics which are designed by using the methad of the study helps the designer to choose the best suitable building envelope. XIV

Benzer Tezler

  1. Sıcak kuru iklim bölgelerinde enerji korunumu açısından bina dış kabuğu alternatiflerinin bina formuna bağlı olarak belirlenmesi

    Determination of external building envelope alternatives acording to building from energy conservation point of view for hot-dry climatic zone

    NAİME ALAYBAŞI

    Yüksek Lisans

    Türkçe

    Türkçe

    2003

    Mimarlıkİstanbul Teknik Üniversitesi

    Mimarlık Ana Bilim Dalı

    DOÇ. DR. GÜL KOÇLAR ORAL

  2. İklim değişikliği ve iklimle dengeli çevre tasarım ilkeleri

    Climate change and climate-balanced environmental design principles

    LEMAN AKMAN

    Yüksek Lisans

    Türkçe

    Türkçe

    2024

    Mimarlıkİstanbul Gelişim Üniversitesi

    Mimarlık Ana Bilim Dalı

    PROF. DR. MEHMET ŞENER KÜÇÜKDOĞU

  3. Binalarda enerji korunumu açısından yapı bileşenlerinde kullanılan faz değiştiren malzemelerin performansının değerlendirilmesi

    Evaluation of the performance of building components constructed with phase-change materials in terms of energy conservation in residential building

    EDA KÖSE

    Yüksek Lisans

    Türkçe

    Türkçe

    2019

    Mimarlıkİstanbul Teknik Üniversitesi

    Mimarlık Ana Bilim Dalı

    DOÇ. DR. GÜLTEN MANİOĞLU

  4. Enerji etkin büro binalarında tipolojik değişim

    The typological change of energy efficient office buildings

    SERKAN ENNAÇ

    Yüksek Lisans

    Türkçe

    Türkçe

    2004

    MimarlıkYıldız Teknik Üniversitesi

    Mimarlık Ana Bilim Dalı

    PROF.DR. FATİH PAKDİL