Geri Dön

Entropy-based goodness-of-fit testsfor multivariate distributions

Başlık çevirisi mevcut değil.

  1. Tez No: 760265
  2. Yazar: MEHMET SIDDIK ÇADIRCI
  3. Danışmanlar: Belirtilmemiş.
  4. Tez Türü: Doktora
  5. Konular: Matematik, Mathematics
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2021
  8. Dil: İngilizce
  9. Üniversite: University of Wales-Cardiff
  10. Enstitü: Yurtdışı Enstitü
  11. Ana Bilim Dalı: Belirtilmemiş.
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 142

Özet

Özet yok.

Özet (Çeviri)

Entropy is one of the most basic and significant descriptors of a probability distribution. It is still a commonly used measure of uncertainty and randomness in information theory and mathematical statistics. We study statistical inference for Shannon and Rényi's entropy-related functionals of multivariate Gaussian and Student-t distributions. This thesis investigates three themes. First, we provide a non-parametric test of goodness-of-fit for a class of multivariate generalized Gaussian distributions based on maximum entropy principle via using the k-th nearest neighbour (NN) distance estimator of the Shannon entropy. Its asymptotic unbiasedness and consistency are demonstrated. Second, we show a class of estimators of the Rényi entropy based on an independent identical distribution sample drawn from an unknown distribution f on R m. We focus on the maximum Rényi entropy principle for multivariate Student-t and Pearson type II distributions. We also consider the entropy-based test for multivariate Student-t distribution using the k-th NN distances estimator of entropy and employ the properties of entropy estimators derived from NN distances. Third, we introduce a new classes of unimodal rotational invariant directional distributions, which generalize von Mises-Fisher distribution. We propose three types of distributions in which one of them represents the axial data. We provide all of the formula together with a short computational study of parameter estimators for each new type via the method of moments and method of maximum likelihood. We also offer the goodness-of-fit test to detect that the sample entries follow one of the introduced generalized von Mises-Fisher distribution based on the maximum entropy principle using the k-th NN distances estimator of Shannon entropy and to prove its L 2 -consistence.

Benzer Tezler

  1. Uncertainty analysis in selection of models best fit to stochastic processes

    Stokastik süreçlerde en uygun modelin seçiminde belirsizlik analizi

    ÜLKER GÜNER BACANLI

    Doktora

    İngilizce

    İngilizce

    2004

    İnşaat MühendisliğiDokuz Eylül Üniversitesi

    İnşaat Mühendisliği Ana Bilim Dalı

    YRD. DOÇ. DR. TÜRKAY BARAN

  2. Testing the goodness of fit by entropy based method

    Entropi yöntemiyle uygunluk sınamaları

    MUSTAFA ULUÇ

    Yüksek Lisans

    İngilizce

    İngilizce

    2003

    İnşaat MühendisliğiDokuz Eylül Üniversitesi

    İnşaat Mühendisliği Ana Bilim Dalı

    DOÇ. DR. TÜRKAY BARAN

  3. Entropiye dayalı düzgün dağılıma uygunluk testleri

    The goodness of fit tests of uniformity based on entropy

    ÖMER OSMAN KUTSAL

    Yüksek Lisans

    Türkçe

    Türkçe

    2016

    İstatistikGazi Üniversitesi

    İstatistik Ana Bilim Dalı

    DOÇ. DR. FİKRİ GÖKPINAR

  4. Entropi kavramının istatistikteki bazı uygulamaları

    Some applications in statistics entropy

    GÖKHAN DİNÇER

    Yüksek Lisans

    Türkçe

    Türkçe

    2015

    İstatistikYıldız Teknik Üniversitesi

    İstatistik Ana Bilim Dalı

    DOÇ. DR. ATIF AHMET EVREN

  5. Applications of measures of statistical entropy to heteroscedasticity problems in linear regression models

    Istatistiksel entropiye dayali ölçülerin doğrusal regresyon modellerindeki değişen varyans problemlerine uygulanmasi

    HATİCE ÇİĞDEM ÇELİK

    Yüksek Lisans

    İngilizce

    İngilizce

    2022

    İstatistikYıldız Teknik Üniversitesi

    İstatistik Ana Bilim Dalı

    DOÇ. DR. ATIF AHMET EVREN