İstatistiksel öğrenme yöntemleriyle bankaların derecelendirilmesi: Türkiye bankacılık sistemi uygulaması
Banks rating using statistical learning methods: An implementation with Turkey banking system
- Tez No: 768666
- Danışmanlar: PROF. DR. BİRSEN EYGİ ERDOĞAN
- Tez Türü: Yüksek Lisans
- Konular: Bankacılık, İstatistik, Banking, Statistics
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2022
- Dil: Türkçe
- Üniversite: Marmara Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: İstatistik Ana Bilim Dalı
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 63
Özet
Derecelendirme kuruluşları tarafından yapılan finansal derecelendirmeler, özel ya da kamu şirketlerine veya devlete verilen kredilerin geri ödenmemesi riskini değerlendirmek için kullanılan bir araçtır. İyi bir derecelendirmeye sahip olmak, söz konusu şirketin finansal sağlığını ve güvenilirliğini ortaya koymak açısından önemlidir. Bu tezde, Türkiye Cumhuriyeti'ndeki bankaların finansal oranları kullanılarak derecelendirilmesi amaçlanmaktadır. Bu amaçla istatistiksel öğrenme yöntemlerinden yararlandık. Türkiye bankacılık sisteminde 2001 yılında varlık ve bilanço denetleme sisteminde yapılan değişikliklere kadar pek çok finansal kriz yaşanmıştır. Bu krizler neticesinde banka iflasları gözlemlenmiştir. Banka iflasları genel olarak ekonomik çöküntüye yol açabileceğinden bankaların düzenli olarak izlenmesi çok önemlidir. Genelde bu izleme bankaların yıllık bilançolarının takibi üzerinden yapılmaktadır. Yıllık bilançosuna bakarak, bir bankanın iflas edip etmediğini açıkça söyleyebiliriz ancak bankalar arasında hangi bankanın diğerinden daha fazla çökmeye yakın olduğunu söylemek zor olabilir. Bu çalışmanın amacı bankaların başarı düzeyleri açısından sıralanmalarını sağlayan bir derecelendirme sistemi önermektir. Bu çalışmada kullanılan veriler Türkiye Bankalar Birliği'nin (TBB) web sitesinden elde edilmiştir. TBB'den gelen veriler iki türe ayrıldığı için (iki bin bir yılından önceki bilançolardan ve iki bin bir yılından sonra bilançolardan oluşan veriler) her şeyden önce bu verilerin uyumunu kontrol edip gereken düzeltmeleri yaptık. Sonra uygun veri düzenleme ve temizleme yöntemleri uygulayarak temel istatistiksel hesaplama işlemleri yaptık. Ardından, literatürde daha önce yapılmış bilimsel çalışmaları inceleyip alternatif bir derecelendirme modeli oluşturmak için istatistiksel öğrenme yöntemlerinden yararlandık.
Özet (Çeviri)
Financial ratings made by rating agencies are a tool used to assess the risk of non-repayment of loans given to private or public companies or to governments. Having a good rating is important to demonstrate the financial health and reliability of the company in question. In this thesis, it is aimed to rate banks of the Republic of Turkey using financial ratios. For this purpose, statistical learning methods were used. Up to the balance sheet assets and audit changes made to the Turkey Banking System in 2001, there has been too much financial crisis. As a result of these crises, bankruptcies were observed. Regular monitoring of banks is very important, as bankruptcy can lead to economic downturn in general. In general, this monitoring is carried out by following the annual balance sheets of the banks. We can clearly say whether one bank went bankrupt or not by looking at their annual balance sheet, but it can be difficult to tell which bank is close to collapse among several banks. The aim of this study is to propose a rating system that allows to rank banks in terms of their success levels. The data used in this study were obtained from the Banks Association of Turkey's (TBB) web site. Since the data from the TBB is divided into two types (balance sheets before the year two thousand one and balance sheets after the year two thousand one), first of all, the compliance of these data was checked and necessary corrections were made. Then, basic statistical calculations were performed by applying classical data editing and cleaning methods. Afterwards, statistical learning methods was used in order to form an alternative rating model by examining the previous scientific studies in the documentatons.
Benzer Tezler
- Makine öğrenmesi yöntemleriyle enflasyona etki eden faktörlerin incelenmesi: Türkiye örneği
Using machine learning methods to examine factors affecting inflation: The example of Türkiye
HASAN ŞEN
Yüksek Lisans
Türkçe
2023
Endüstri ve Endüstri MühendisliğiBursa Teknik ÜniversitesiEndüstri Mühendisliği Ana Bilim Dalı
DOÇ. DR. ÖMER FARUK EFE
- عوائق تطوير الصيرفة الالكترونية في البنوك الإسلامية اليمنية
Yemen'in islami bankalarında elektronik bankacılık gelişimine engeller
ABDULKAREM HASSAN MOHAMMED AL HUBAISHI
Yüksek Lisans
Arapça
2017
Ekonomiİstanbul Sabahattin Zaim Üniversitesiİslam İktisadı ve Hukuku Ana Bilim Dalı
YRD. DOÇ. DR. SUHEL AHMAD FADEL HAWAMDEH
- Tüketici kredi risklerinin, meta-sezgisel yaklaşımlar ileiyileştirilmiş rastgele ormanlar yöntemi aracılığıyla değerlendirilmesi
Assessment of consumer credit risk via random forests method improved with a combined meta-heuristic approach
HAZAR ALTINBAŞ
- İstatistiksel öğrenme yöntemleriyle bağışçı davranışlarının incelenmesi
Investigation of donor behaviour using statistical learning methods
EMRE SIRMA
Yüksek Lisans
Türkçe
2024
İstatistikMimar Sinan Güzel Sanatlar Üniversitesiİstatistik Ana Bilim Dalı
PROF. DR. AYÇA ÇAKMAK PEHLİVANLI
- Çoklu gen hastalıklarının istatistiksel öğrenme yöntemleriyle analizi
Analysis of polygenic diseases using statistical learning methods
MEHMET KORKMAZ
Yüksek Lisans
Türkçe
2007
BiyoistatistikAnkara ÜniversitesiBiyoteknoloji Ana Bilim Dalı
DOÇ. DR. H. GÖKHAN İLK