Modüllerin dik toplamlarının injektifliğinin kapsamı
Extent of the injectivity of direct sums of modules
- Tez No: 921221
- Danışmanlar: DOÇ. DR. SULTAN EYLEM TOKSOY
- Tez Türü: Yüksek Lisans
- Konular: Matematik, Mathematics
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2025
- Dil: Türkçe
- Üniversite: Hacettepe Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Matematik Ana Bilim Dalı
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 75
Özet
Bu tezde son zamanlarda yapılan çalışmalarda bir halkada injektif sağ modüllerin dik toplamı injektiftir ancak ve ancak o halka sağ Noether halkadır gerçeğinden esinlenilerek belirli modüllerin injektiflik bölgelerinin bir halkanın ne ölçüde Noether olduğunu ölçmeye hizmet edebileceğini göstermek için ortaya atılan bir yöntem sunulmuştur. Bu yöntem için tanımlanmış olan kararlı injektiflik bölgeleri, kararlı modüller ve Noether eşik kavramları verilmiştir. Noether halkaların zıt kavramı olarak tanımlanmış uçucu halkalar için yapılmış bazı karakterizasyonlar sunulmuştur. Uçucu halka örneklerinin yanı sıra ne Noether ne de uçucu olan halkaların örnekleri verilmiştir.
Özet (Çeviri)
In this thesis, we present a method inspired by the fact that a ring is a right Noetherian ring if and only if the direct sums of injective right modules is injective, which is introduced in recent studies to show how the injectivity domains of certain modules can serve to measure the extent to which a ring is Noetherian. The notions of stable injectivity domains, stable modules and Noetherian threshold, which are defined for this purpose, are presented. Some characterizations of volatile rings, which are introduced as a notion opposite to Noetherianness, examples of volatile rings and examples of rings that are neither Noetherian nor volatile are given.
Benzer Tezler
- Halkalar ve modüller üzerindeki genişleme özellikleri
Extending properties on rings and modules
YELİZ KARA
- Baer and quasi-Baer modules
Baer ve quasi-Baer modüller
ARDA KÖR
Yüksek Lisans
İngilizce
2011
MatematikAbant İzzet Baysal ÜniversitesiMatematik Bölümü
YRD. DOÇ. DR. CESİM ÇELİK
YRD. DOÇ. DR. TAHİRE ÖZEN ÖZTÜRK
- Dik toplanan alt modüllerin arakesiti ve toplamlarının dik toplam özelliği ile modül ve halkaların karakterizasyonu
Characterization of modules and rings with the intersection of direct summands sub-modules and the sum of their sums
EREN DOĞAN