Geri Dön

Optimum dinamikli yüksek mertebeden aktif RC filtre sentezi ve simulasyon için bir paket program cafid

A Package program called cafid for the synthesis and the simulation and high order active RC filtres with the optimum dynamic range

  1. Tez No: 39616
  2. Yazar: ERSİN BAYRAMOĞLU
  3. Danışmanlar: PROF.DR. ALİ NUR GÖNÜLEREN
  4. Tez Türü: Yüksek Lisans
  5. Konular: Elektrik ve Elektronik Mühendisliği, Electrical and Electronics Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 1994
  8. Dil: Türkçe
  9. Üniversite: İstanbul Teknik Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Belirtilmemiş.
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 235

Özet

(3). Suboptimum cascade sequence is found by ordering biquadratic sections from input to output by increasing d^ values. (4). Gain distribution is evaluated to avoid overloading. In the CAFID, the decomposition problem has been solved to maximize the dynamic range of the cascaded network. In the realization phase, any of the appropriate network may be used to realize the biquadratic transfer functions in the cascade. This step can also be achieved by using the CAFID. After the evaluation of the CAFID, some considerable results, in addition to the new methods for pole-zero pairing have been obtained. Several important aspects and results are summarized as follows. Since the classical approximations are used to form the transfer function, the construction of single d;j table is adequate for solving pole-zero pairing with an assumption of all zero pairings chosen as z(0,oo) for band-pass Butterworth and Chebyshev filters. From the discussion of four types of biquadratic functions, the measure of flatness d;j can be found by evaluating G^co) at the three points of frequency. The new pole-zero pairing method, used only the dSj table, has been suggested. The proposed method for the classical filter approximations and four types of filter functions has given the expected optimum solution. The method has been verified by comparing the results of the d;j graph with the filter program. A new rule of thumb has been introduced to solve pole-zero pairing problem. Using this approximation method, one can easily find optimum or suboptimum solution without using a computer program. Studying various types of filter designs for different classical approximations, some properties of d;j values on the d^ table have been found. (1). The d;j values on columns of the d^ table are equal to each other in the Butterworth and Chebyshev filters ( dn = di2 =... = d^ ). (2). For the same filter specification, like A^, A^, £lp and Qs, the d;j tables constructed for a lowpass and a highpass filter are equal to each other for all type of classical approximation. (3). Two of the d;j values from dtj table can be equal to each other in the bandpass and bandreject filters. (4). For different pole-zero pairings from d;j table, the d;j values can also be equal to each other in the Chebyshev and Elliptic filters with even order. XVII

Özet (Çeviri)

First objective may be met if the maximum amplitudes of all the voltages V“ V2,..., Vn are equal to V,^. Thus the gain constants distribution must be made such that, iv! =|v,| =... =|vl =v (8) I Umax I 2lmax I ”Imax T v ' In order for the signal-to-ratio to be as high as possible, we must maximize the minimum of in-band signal what this means is that the pole-zero pairing and the cascade sequencing must be done such that the magnitude of the intermediate transfer functions T;(s) is as flat as possible over the filter passband. Decomposition problem can be split into the following three steps to obtain simple solutions. (1). Determine the pole-zero pairing such that each h;(s) is as flat as possible over the filter passband. (2). Find a sequence such that each T;(s) is as flat as possible. (3). Assign gain constants Hi0 such that (8) is satisfied. A systematic method was proposed for solving the pole-zero pairing problem iture [3 be defined as, in literature [3,42,43]. In this method, a measure of flatness for any function H;j(s) can d"=21og where (G \ 10 ij max \^ ij min J and G^lH^/Hj (9) GijmiK=Max[GİJ(ö;)], 0

Benzer Tezler

  1. A real time resonance detection and mitigation method for shunt active power filters

    Şönt aktif güç filtreleri için gerçek zamanlı rezonans tespit ve azaltma yöntemi

    RAMAZAN BERKAN TÜT

    Yüksek Lisans

    İngilizce

    İngilizce

    2025

    Elektrik ve Elektronik Mühendisliğiİstanbul Teknik Üniversitesi

    Elektronik ve Haberleşme Mühendisliği Ana Bilim Dalı

    PROF. DR. MÜŞTAK ERHAN YALÇIN

  2. Application of matrix product states for few photon dynamics and quantum walks in reduced dimensions

    Matris çarpım durumları formalizminin düşük boyutlarda az sayıdaki fotonların dinamiğine ve kuantum yürüyüşlerine uygulanması

    BURÇİN DANACI

    Doktora

    İngilizce

    İngilizce

    2021

    Fizik ve Fizik Mühendisliğiİstanbul Teknik Üniversitesi

    Fizik Mühendisliği Ana Bilim Dalı

    DOÇ. DR. AHMET LEVENT SUBAŞI

  3. Quantitative analysis of aircraft aerodynamic derivatives using the least squares method in a six degrees of freedom flight simulation environment

    Uçak aerodinamik türevlerinin altı serbestlik dereceli uçuş benzetim ortamında en küçük kareler yöntemi ile kantitatif analizi

    FURKAN ALTINIŞIK

    Yüksek Lisans

    İngilizce

    İngilizce

    2024

    Havacılık ve Uzay Mühendisliğiİstanbul Teknik Üniversitesi

    Uçak ve Uzay Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ HAYRİ ACAR

  4. Sürekli yapı sistemlerinin optimum boyutlandırılması

    Optimum design of continuum structural systems

    SEDAT SAVAŞ

    Doktora

    Türkçe

    Türkçe

    2002

    İnşaat MühendisliğiFırat Üniversitesi

    İnşaat Mühendisliği Ana Bilim Dalı

    PROF. DR. MEHMET ÜLKER

  5. Pompa jetli su altı araçları için optimizasyon temelli tasarım metodolojisi geliştirilmesi

    Development of an optimization-based design methodology for underwater vehicles with pump jets

    EFECAN OĞUZ DEMİR

    Yüksek Lisans

    Türkçe

    Türkçe

    2025

    Gemi Mühendisliğiİstanbul Teknik Üniversitesi

    Gemi İnşaatı ve Gemi Makineleri Mühendisliği Ana Bilim Dalı

    PROF. DR. UĞUR ORAL ÜNAL