A novel magnetic resonance imaging (MRI) approach for measuring weak electric currents inside the human brain
Başlık çevirisi mevcut değil.
- Tez No: 523396
- Danışmanlar: DOÇ. Dr. AXEL THIELSCHER, DOÇ. Dr. LARS G. HANSON
- Tez Türü: Doktora
- Konular: Elektrik ve Elektronik Mühendisliği, Electrical and Electronics Engineering
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2017
- Dil: İngilizce
- Üniversite: Technical University of Denmark
- Enstitü: Yurtdışı Enstitü
- Ana Bilim Dalı: Belirtilmemiş.
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 138
Özet
Özet yok.
Özet (Çeviri)
Knowing the electrical conductivity and current density distribution inside the human brain will be useful in various biomedical applications, i.e. for improv-ing the efficiency of non-invasive brain stimulation (NIBS) techniques, the ac-curacy of electroencephalography (EEG) and magnetoencephalography (MEG) source localization, or localization of pathological tissues. For example, the ac-curacy of electric field simulations for NIBS techniques is currently reduced by assigning inaccurate ohmic conductivity values taken from literature to differ-ent brain tissues. Therefore, the knowledge of individual ohmic conductivity values may open up the possibility of creating more realistic and accurate head models, which may ameliorate the simulations and practical use of NIBS tech-niques. Magnetic resonance current density imaging (MRCDI) and magnetic resonance electrical impedance tomography (MREIT) are two emerging methods for cal-culating the current flow and for reconstructing the ohmic conductivity distri-bution inside the human brain. Both methods use measurements of the magnetic field ΔBz,c that are induced by weak currents applied via surface electrodes. The sensitivity of the measurements directly affects the accuracy of the current flow estimations and the quality of the reconstructed conductivity images. It in-creases with increasing strength of the injected currents that are limited to 1-2 mA for in-vivo human brain applications. Therefore, sensitivity improvements of the underlying MRI methods are crucial for implementing MRCDI and MREIT in neuroscience and clinical applications. In this thesis, systematic sensitivity and efficiency analyses of two different MRI pulse sequences, multi-echo spin echo (MESE) and steady-state free pre-cession free induction decay (SSFP-FID), are performed in order to optimize these sequences for in-vivo application in the human brain. The simulations are validated by comprehensive phantom experiments. Secondly, the optimized se-quences are tested for in-vivo human brain applications, and adapted to increase their robustness to physiological noise. The current-induced magnetic field ΔBz,c inside the brain is measured in different individuals, revealing inter-indi-vidual ΔBz,c differences due to anatomical variability. Finally, volume conduc-tor models of the individuals are created and used to simulate the current-in-duced ΔBz,c images and the current flow distributions. Comparison of the ΔBz,c and current flow simulations and measurements demonstrates a good corre-spondence. In summary, the results presented in this thesis pave the way for employing the optimized MRI sequences in future studies to improve the effi-ciency of NIBS techniques.
Benzer Tezler
- MEMS sensor platform for vital monitoring under mri and intraocular pressure measurement
Yaşamsal işaretlerin ve göz içi basıncın ölçülmesine yönelik MEMS basınç ölçer platformunun geliştirilmesi
PARVIZ ZOLFAGHARI
Doktora
İngilizce
2023
Elektrik ve Elektronik Mühendisliğiİstanbul Teknik ÜniversitesiElektronik ve Haberleşme Mühendisliği Ana Bilim Dalı
DOÇ. DR. ONUR FERHANOĞLU
- Normal popülasyonda miyokardiyal T1, T2 ve T2* değerlerinin yaş, cinsiyet ve kardiyak segmentlere göre analizi
Analysis of myocardial T1, T2, and T2* values in normal population by age, gender, and cardiac segments
ÇAĞRI ÖZCAN
Tıpta Uzmanlık
Türkçe
2023
Radyoloji ve Nükleer TıpSağlık Bilimleri ÜniversitesiRadyoloji Ana Bilim Dalı
PROF. DR. HASAN YİĞİT
- Machine-learning approaches for neurological disorder diagnosis from genomic and neuroimaging data
Genomik ve nörogörüntüleme verilerinden nörolojik bozukluk teşhisi için makine öğrenmesi yaklaşımları
İSMAİL BİLGEN
Doktora
İngilizce
2024
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
PROF. DR. BEHÇET UĞUR TÖREYİN
- Alzheimer demans hastalarında beyin manyetik rezonans görüntüleme volumetri ölçümleri ile nöropsikolojik testlerin ve beyin omurilik sıvısı biyobelirteçlerinin karşılaştırılması
CSF biomarkers, neuropsychologic assessment (NPA) and magnetic resonance imaging (MRI) volumetry in Alzheimer's disease
ANIL TANBUROĞLU
Tıpta Uzmanlık
Türkçe
2014
NörolojiDokuz Eylül ÜniversitesiDahili Tıp Bilimleri Bölümü
PROF. DR. GÖRSEV YENER
- Automated detection of endometrial and ovarian cancers by classification of urine-based FTIR spectroscopy signals using genetic algorithm, machine learning and deep learning methodologies
İdrar tabanlı FTIR spektroskopi sinyallerinin genetik algoritma, makine öğrenmesi ve derin öğrenme yöntemleri kullanılarak sınıflandırılması aracılığıyla rahim ve yumurtalık kanserlerinin otomatik teşhisi
FATIME OUMAR DJIBRILLAH
Yüksek Lisans
İngilizce
2023
Mühendislik BilimleriErciyes ÜniversitesiBiyomedikal Mühendisliği Ana Bilim Dalı
PROF. DR. MEHMET EMİN YÜKSEL