Geri Dön

Sürdürülebilirlik perspektifinden petrol endüstrisinde iklim değişikliğine yönelik zarar azaltma çalışmaları: İstanbul akaryakıt istasyonları örneği

Climate change mitigation efforts in the oil industry from a sustainability perspective: The case of İstanbul gas stations

  1. Tez No: 865738
  2. Yazar: GÖNENÇ BAYRAM
  3. Danışmanlar: DR. ÖĞR. ÜYESİ HİKMET İSKENDER
  4. Tez Türü: Yüksek Lisans
  5. Konular: Deprem Mühendisliği, Earthquake Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2024
  8. Dil: Türkçe
  9. Üniversite: İstanbul Teknik Üniversitesi
  10. Enstitü: Lisansüstü Eğitim Enstitüsü
  11. Ana Bilim Dalı: Afet Yönetimi Ana Bilim Dalı
  12. Bilim Dalı: Afet Yönetimi Bilim Dalı
  13. Sayfa Sayısı: 135

Özet

İklim değişikliği, tüm dünyanın kabul ettiği en güncel ve en ciddi çevresel tehdittir. Artan hava kirliliği ile birlikte küresel ısınma hızlanmış; sera gazının olumsuz etkileri yanında doğal afetlerin sıklığı, yoğunluğu ve öngörülemezliği de artmıştır. Sıklıkla yaşanan kasırgalar, seller, kuraklıklar ve yangınlar her seferinde toplulukları ve ekonomileri olumsuz etkileyerek insan hayatına ve çevreye büyük zararlar vermektedir. Özellikle zarar görebilirliği ve kırılganlığı yüksek olan ülkelerde afetlerin etkileri daha da büyük olmaktadır. Yaşanan afetler sonrası gelişmekte olan veya az gelişmiş ülkelerin ekonomik kalkınma olanakları ortadan kalkmaktadır. Yoksul nüfusun yoğun olduğu kentlerin sahip oldukları altyapılarıyla, iklim değişikliği ve afetler karşısında kırılganlıkları artmaktadır. Bu nedenle, toplumların dirençli ve dayanıklı olma kapasitelerini artırmak, afetlerle mücadele ve sürdürülebilir kalkınma için hayati önem taşımaktadır. Küresel boyutta iklim değişikliğine karşı oluşturulan zarar azaltma stratejilerine öncülüğü petrol endüstrisi göstermektedir. 1970'li yıllardan itibaren petrol ürünlerine bağlı emisyonların önlenmesi ve ekonomiye tekrar kazandırılması için teknolojik geliştirmeler ve bunları destekleyen yasal düzenlemeler yapılmıştır. Bu çalışmada, ülkemizde 2018 yılında yürürlüğe giren yönetmelik ile birlikte zorunluluk haline gelen akaryakıt istasyonlarında benzin kaynaklı uçucu organik bileşik emisyonunun önlenmesinin ve ekonomiye geri kazanılmasının iklim değişikliğine yönelik zarar azaltma çalışmalarına nasıl katkıda bulunabileceği incelenmiştir. Akaryakıt istasyon sayısı ve perakende satış miktarı en fazla olan İstanbul ili içinde bir akaryakıt dağıtım firmasına ait 124 adet istasyon örnekleme ile seçilerek çalışma alanı sınırlandırılmıştır. Örnekleme alınan istasyonların akaryakıt tanklarına dolum ve depolama (Faz I) ve taşıtlara ikmal (Faz II) aşamalarındaki benzin buharı emisyonları, 2022 yılına ait benzin satış miktarı, tanktaki ürün sıcaklığı, aylık ortalama hava sıcaklığı ve uçuculuk (RVP) değerleri kullanılarak literatür araştırması sonucu seçilen ampirik hesaplama modelleri ile öngörülmeye çalışılmıştır. Ayrıca Coğrafi Bilgi Sistemi (CBS) kullanılarak istasyonların çevresel etkileri incelenmiştir. Elde edilen veriler ışığında, yakın zamanda uygulamaya geçen benzin buhar geri kazanım sistemlerinin, benzin kaynaklı emisyonları önleyerek hem akaryakıt istasyonlarının çevresel etkisini azaltacağını hem de ekonomiye geri kazandırılan ürün buharı ile birlikte ülkemizin sürdürülebilir kalkınma ve 2053 net sıfır emisyon hedeflerine önemli düzeyde katkıda bulunacağı kesin bir biçimde değerlendirilmektedir. Çevresel sürdürülebilirlik ve emisyon azaltma çabaları, iklim değişikliği ile mücadelede kritik bir rol oynamaktadır.

Özet (Çeviri)

Climate change, also referred to as the climate crisis, encompasses global shifts in Earth's average temperature and the ensuing repercussions resulting from these temperature variations. Human activities, particularly during the industrial revolution of the 19th century, have significantly disrupted the natural carbon cycle, resulting in a substantial increase in atmospheric carbon dioxide (CO2) levels. This phenomenon is dual-fold, embodying both a natural Earth process and complex interactions stemming from human activities, notably the emission of greenhouse gases (GHGs). Undoubtedly, climate change amplifies existing disaster risks, posing threats to livelihoods, settlements, critical infrastructures, and the resilience of ecosystems and communities in the face of heightened uncertainty and disaster frequency. Disasters, beyond causing immediate loss of life and property, incur significant economic damage that impedes development. Even minor economic losses are critical for states with very low gross national income (GNI). For instance, the losses incurred by Hurricane Mitch in 1998 in Honduras and Nicaragua surpassed the combined gross domestic product (GDP) of both countries, setting back their development goals by at least two decades. Climate change induces various adverse effects, including rising temperatures, sea-level rise, and extreme weather events, leading to climate migration and contributing to global conflicts, as acknowledged by the European Union (EU) in various documents. The obligation to curtail human-induced GHG emissions, identified as a primary cause of climate change, is closely tied to the petroleum industry's activities, which significantly contribute to these emissions through the release of volatile organic compounds (VOCs) at various stages of the oil industry processes. Gasoline, a widely used fossil fuel obtained from fuel stations, contributes to climate change through evaporation, primarily releasing volatile organic compounds such as isopentane, benzene, and toluene into the atmosphere. This evaporation is more pronounced during the summer months when air temperatures are elevated. However, an abrupt cessation of fossil fuel use would inevitably trigger significant economic problems. Therefore, a gradual transition from fossil fuel usage to renewable energy sources is deemed necessary. Controlling emissions from gasoline vapor has become a crucial topic in climate change mitigation efforts, particularly in the United States and the European Union. The intense visible air pollution observed in many cities and industrial centers due to increasing industrialization in the late 1960s supported the initiation of the national environmental movement and the enactment of the Clean Air Act (CAA) by the U.S. Environmental Protection Agency (EPA) in 1970. Within the European Union, Directive 94/63/EC stands as the primary regulation addressing gasoline vapor emissions in the petroleum industry, specifically aiming to reduce gasoline vapor emissions in the fuel sector by making the use of Vapor Recovery Systems (VRS) mandatory at fuel stations. Examining the petroleum sector in Turkey, annual reports by the Energy Market Regulatory Authority (EMRA) reveal an 80% increase in gasoline consumption over a decade. In alignment with the EU accession process, regulations for the recovery of gasoline emissions were introduced in 2018 with the publication of the Regulation on the Control of Volatile Organic Compound Emissions Arising from the Storage and Distribution of Gasoline and Naphtha. This regulation, based on EU directives 94/63/EC and 2009/126/EC, mandates the application of Vapor Recovery Systems (VRS) in two phases – Phase I and Phase II – to align with global VRS practices. Turkey, as a party to the Paris Climate Agreement, has accentuated the importance of recovering gasoline vapor. This study aims to investigate the integration of emission control methods, including vapor recovery systems and sustainable practices, for disaster resilience. Additionally, it evaluates their impact on both environmental sustainability and disaster preparedness, focusing on fuel station activities in Istanbul. Gasoline, a widely used fossil fuel, is prone to evaporation at ambient temperatures, releasing volatile organic compounds, primarily hydrocarbons. Gasoline comprises compounds known as the BTEX group (benzene, toluene, ethylbenzene, and xylene), which have detrimental effects on respiratory, nervous, and immune systems, posing serious threats to human health. U.S. Environmental Protection Agency (EPA) assessments indicate higher BTEX concentrations within approximately a 200-meter radius around gasoline sales stations compared to other areas. Losses from fuel station operations occur in three distinct processes: Storage tank losses, Operational losses, and vehicle refueling. Storage tank losses arise during the filling of underground storage tanks, leading to emissions through vent connections during gasoline transfer. Operational losses occur during routine checks performed by station operators for product levels and water presence in tanks. Vehicle refueling losses happen during the transfer of gasoline from storage tanks to vehicles, releasing vapor into the atmosphere during refueling. The amount of emissions during vehicle refueling theoretically depends on the quantity and temperature of both the gasoline in the vehicle and the filled gasoline, as well as the Reid Vapor Pressure (RVP), a general measure of gasoline volatility. Emission control in fuel stations hinges on predicting vapor formation during operations. Vapor recovery systems (VRS) aim to recover at least 95% of gasoline vapor formed during storage, transportation, and refueling activities. This critical efficiency ratio of 95% is globally applicable to VRS systems implemented worldwide. In this study, The technical report titled“Classification of Air Polluting Emissions: AP-42,”published by the United States Environmental Protection Agency (EPA) in 1995, is a cornerstone guiding document for calculating gasoline vapor emissions. This report, complemented by various studies and empirical calculation models, serves as a crucial reference for estimating emissions. In 2008, a dedicated guide section titled“Transportation and Retail Sales of Fuels: Classification of Air Polluting Emissions”was added, providing a comprehensive framework for categorizing emission sources and defining calculation methods specific to fuel stations. In the practical implementation section of this study, emissions resulting from the filling, storage, and sales of underground tanks, referred to as storage tank losses, were computed following the emission rate assumptions outlined in the AP-42 document. To calculate emissions during vehicle refueling, an empirical emission calculation model by Rothman and Johnson, widely utilized for general purposes, was employed. With the exception of the COVID-19 pandemic period, gasoline sales in the country have consistently increased at an average rate of approximately % 7 annually. The study focused on Istanbul, where % 24 of the escalating sales volume is concentrated. A total of 124 stations owned by the same fuel distribution company were selected, representing about % 16 of all stations in Istanbul. In 2022, these stations accounted for approximately % 15.51 of total gasoline sales in the city and operated across 35 districts within Istanbul. During 2022, the sampled fuel stations conducted a total of 163,365.15 m3 of gasoline supply and sales. Model-based estimations indicate that the gasoline vapor loss for these stations is 494.02 m3, comprising 266.37 m3 (%53.9) from vehicle filling losses, 210.79 m3 (%42.7) from storage tank losses, and 16.86 m3 (3.4%) from operational losses. This loss corresponds to approximately 0.3% of the total sales volume for the sampled stations, resulting in an average of 3.98 m3/year of gasoline vapor emissions per station. In a broader context, the calculated total gasoline vapor loss for the 124 sampled fuel stations corresponds to around 0.3% of their total sales volume. When extrapolating this loss rate to the 2022 sales volume nationwide (approximately 4,424,960.91 m3), it becomes apparent that approximately 13,400 m3 of gasoline vapor is released into the atmosphere annually. If this emission amount could be recovered through vapor recovery systems, it could significantly contribute to meeting the gasoline consumption needs of provinces such as Ardahan, Bayburt, Hakkâri, and Tunceli, each with less than 3,000 m3/year of gasoline sales. A notable outcome of this study underscores the importance of preventing and recovering gasoline-related emissions through vapor recovery systems, aligning with Turkey's commitment to reduce emissions by at least 35% compared to 2020 levels by 2030 and achieve net-zero emissions by 2053, as declared in 2023. The emission sources and rates identified in this study offer valuable insights for calculating emissions at fuel stations. Implementing vapor recovery systems facilitates easy determination and monitoring of system efficiency, contributing measurably to emission reduction and the 2053 net-zero carbon targets. Considering the results and implications derived from Istanbul and extrapolated nationwide, it is evident that the Vapor Organic Compound (VOC) emission control regulations introduced in 2018, as part of the adaptation process to the European Union, and the implementation of Vapor Recovery Systems (VRS) in gasoline and naphtha storage and distribution constitute a significant mitigation effort within the petroleum industry, specifically at fuel stations. Recovering gasoline vapor not only has the potential for substantial economic gains in the country but also contributes to creating healthier urban environments, aligning with the United Nations Sustainable Development Goals.

Benzer Tezler

  1. Propiolated castor oil:A novel and highly versatile bio-based platform for extremely fast, catalyst- and solvent-free amino-yne click reactions

    Propiyole hint yağı: Son derece hızlı, katalizör ve çözücü içermeyen amino-in klik reaksiyonları için yeni ve çok yönlü biyo-bazlı bir platform

    BÜŞRA ÇELİK

    Yüksek Lisans

    İngilizce

    İngilizce

    2024

    Kimyaİstanbul Teknik Üniversitesi

    Kimya Ana Bilim Dalı

    PROF. DR. HAKAN DURMAZ

  2. Forecasting for bioethanol production in Turkey

    Türkiye'de biyoetanol üretimi için öngörü

    EZGİ BAYRAKDAR ATEŞ

    Doktora

    İngilizce

    İngilizce

    2017

    Enerjiİstanbul Teknik Üniversitesi

    Enerji Bilim ve Teknoloji Ana Bilim Dalı

    PROF. FİLİZ KARAOSMANOĞLU

  3. Sürdürülebilirlik perspektifinden tarım ve enerji

    Agriculture and energy in sustainability perspective

    ESİN ÖZÇELİK

    Yüksek Lisans

    Türkçe

    Türkçe

    2020

    EkonomiKırklareli Üniversitesi

    İktisat Ana Bilim Dalı

    DOÇ. DR. MURAT ÖZTÜRK

  4. Economic and environmental impacts of alternative energy sources on oil exporting countries: An empirical application on African countries

    Alternatif enerji kaynaklarının petrol ihracatçısı ülkeler üzerindeki ekonomik ve çevresel etkileri: Afrika ülkeleri üzerine ampirik bir uygulama

    STEPHEN TAİWO ONIFADE

    Doktora

    İngilizce

    İngilizce

    2023

    EkonomiSelçuk Üniversitesi

    İktisat Ana Bilim Dalı

    DOÇ. DR. SAVAŞ ERDOĞAN

  5. The impact of foreign direct investment on economic growth by construction sector in Krg-Iraq

    Krg-Irak'ta inşaat sektöründeki dogrudan yabancı sermaye yatırımlarının ekonomik büyümeye etkisi

    AYAD HUSSEIN MOHAMMED ALSULAIMAN

    Yüksek Lisans

    İngilizce

    İngilizce

    2018

    İşletmeBingöl Üniversitesi

    İşletme Ana Bilim Dalı

    YRD. DOÇ. DR. YAVUZ TÜRKAN