Exploring customer segmentation in fashion e-commerce through machine learning techniques
Makine öğrenmesi teknikleri kullanarak moda e-ticaret sektöründe müşteri segmentasyonu
- Tez No: 941217
- Danışmanlar: DOÇ. DR. FARUK GÜVEN
- Tez Türü: Yüksek Lisans
- Konular: Yönetim Bilişim Sistemleri, Management Information Systems
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2025
- Dil: İngilizce
- Üniversite: Abdullah Gül Üniversitesi
- Enstitü: Sosyal Bilimler Enstitüsü
- Ana Bilim Dalı: Veri Bilimi Ana Bilim Dalı
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 74
Özet
Teknolojinin çok hızlı geliştiği günümüzde internet kullanımı da orantılı olarak artmaktadır. Bu değişim markaların e-ticaret sektörüne önem verdiğini ortaya koymuştur. E-ticaretin önemi markaların lehinedir çünkü şirketlerin bazı sabit giderlerinde azalmalar olmuştur. Online alışverişin artmasıyla birlikte müşterilerin kişisel analizleri de yapılabilmektedir. Müşteri ilişkileri yönetimi (CRM) önem kazanmıştır. Müşteri odaklı pazarlama için müşterileri segmentlere ayırmak gerekmektedir. Müşteri segmentasyonu yaygın olarak kullanılan bir analiz biçimidir. Her bir müşterinin ilgi ve motivasyonlarını derinlemesine anlamak için artan bir talep vardır. Bu anlayışı elde etmek için yaygın olarak kullanılan bir yöntem olan segmentasyon son yıllarda sürekli olarak iyileştirilmektedir. Bu makale çeşitli segmentasyon yöntemlerinin ve bunların mevcut gelişim durumlarının iyi yapılandırılmış bir genel görünümünü sunmayı amaçlamaktadır. Bu çalışmada müşteri segmentasyonu için RFM (Recency, Frequency, Monetary) analizi kullanılmıştır. Müşteriler son alışveriş zamanı, alışveriş sıklığı ve toplam harcamalarına göre puanlanarak segmentlere ayrılmıştır. K-Means ile dört müşteri grubu oluşturulup her bir segmentin değerleri analiz edilmiştir. Churn oranı analizi ile 90 gün boyunca alışveriş yapmayan müşteriler kayıp olarak belirlenmiştir. Churn tahmini, makine 3 öğrenmesi tekniği kullanılarak LightGBM modeli ile yapılmıştır. Ayrıca, Ridge Regresyonu makine öğrenmesi tekniği kullanılarak Tahmini CLV modeli geliştirilmiştir. Doğruluk oranı artırılarak düşük, orta ve yüksek CLV segmentleri oluşturulmuştur. Sonuç olarak, müşteri ilişkilerini optimize etmek ve gelirleri artırmak için RFM analizi, K-Means ve CLV tahmini kullanılmıştır. Özel bir markanın e-ticaret verileri makine öğrenmesi teknikleri kullanılarak analiz edilmiştir. Günümüzde, hesaplama gücünde artış ve makine öğrenmesi/yapay zeka algoritmalarında hızlı gelişmeler yaşanmaktadır. Bu durum son zamanlarda daha gelişmiş tekniklerin uygulanmasına olanak sağlamıştır.
Özet (Çeviri)
In today's world where technology is developing very rapidly, internet usage is also increasing proportionally. This change has revealed that brands attach importance to the sector. The significance of e-commerce is to the advantage of brands because there have been decreases in some fixed expenses of companies. With the increase in online shopping, personal analyses of customers can also be made by customer relationship management (CRM). It is necessary to divide customers into segments for customer-oriented marketing. Customer segmentation is a widely used form of analysis. There is an increasing demand to develop a deep awareness of individual customer needs and desires. Segmentation, a commonly utilized method for achieving this understanding, has undergone continuous refinement in recent years. This study targets to present a detailed analysis of various segmentation approaches and their evolution. In this study, RFM (Recency, Frequency, Monetary) analysis was used for segmenting the customers. Customers were divided into segments by scoring them on the last shopping time, shopping frequency and total spending. Four customer groups were created with K-means and the values of each segment were analyzed. Churn rate analysis determined customers who did not shop for 90 days as lost. Churn estimation was performed with the LightGBM model using the machine learning technique. In addition, the Predictive CLV (customer lifetime value) model was developed using the 1 machine learning technique Ridge Regression. The accuracy rate was increased and low, medium and high CLV segments were created. As a result; RFM , K-means and CLV estimation were used to optimize customer relationships and increase revenues. E-commerce data of a private brand was analyzed using machine learning techniques. Nowadays, there is an increase in computing power and rapid developments in machine learning/artificial intelligence algorithms. This has recently enabled the application of more advanced techniques.
Benzer Tezler
- Determinants of purchase intensions for luxury brands
Lüks markalar için satın alma niyetlerinin belirleyicileri
ECEM YAPICI
Yüksek Lisans
İngilizce
2016
İşletmeİstanbul Bilgi Üniversitesiİşletme Ana Bilim Dalı
PROF. DR. SELİME SEZGİN
- CRM alanında veri madenciliği uygulamaları
Data mining applications in CRM field
YEŞİM DURALOĞLU
Yüksek Lisans
Türkçe
2017
İstatistikEge Üniversitesiİstatistik Ana Bilim Dalı
DOÇ. DR. HAKAN SAVAŞ SAZAK
- Kümeleme yöntemleri ile müşteri kanal göçü analizi
Customer channel migration analysis with clustering methods
GİZEM ÇALIŞKAN
Yüksek Lisans
Türkçe
2023
Endüstri ve Endüstri Mühendisliğiİstanbul Teknik ÜniversitesiEndüstri Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ MEHMET YASİN ULUKUŞ
- Baskı çoğaltma endüstrisine yönelik otonom tekliflendirme ve cihaz yönetimi stratejilerinin değerlendirilmesi: Bir karar destek sisteminin tasarımı
Evaluation of autonomous bidding and device management strategies for the print reproduction industry: The design of a decision support system
DENİZ IŞIL ŞİMŞEK
Yüksek Lisans
Türkçe
2024
Endüstri ve Endüstri Mühendisliğiİstanbul Teknik ÜniversitesiEndüstri Mühendisliği Ana Bilim Dalı
PROF. DR. EMRE ÇEVİKCAN
- Impact of personalized AI advertising activities on consumer's purchase intentions
Kişiselleştirilmiş yapay zeka reklam faaliyetlerinin tüketicinin satın alma niyeti üzerindeki etkisi
DENİZ BERKAY BIÇAK
Yüksek Lisans
İngilizce
2025
İşletmeÇankaya Üniversitesiİşletme Ana Bilim Dalı
DR. ÖĞR. ÜYESİ BÜLENT ÖZSAÇMACI