Geri Dön

Kesirsel difüzyon denkleminin schrödinger denklemi ile ilişkilendirilmesi ve kesirsel matematikle çözümlerinin incelenmesi

The relationship of the fractional diffusion equation with the Schrödinger equation and investigation of the solutions with fractional mathematics

  1. Tez No: 563986
  2. Yazar: SAFİ KOLKIRAN
  3. Danışmanlar: PROF. DR. SELÇUK AKTÜRK, DR. ÖĞR. ÜYESİ GÖRKEM OYLUMLUOĞLU
  4. Tez Türü: Yüksek Lisans
  5. Konular: Fizik ve Fizik Mühendisliği, Physics and Physics Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2019
  8. Dil: Türkçe
  9. Üniversite: Muğla Sıtkı Koçman Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Fizik Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 103

Özet

Karmaşık fiziksel sistemlerin dinamiğini tasvir etmekte standart matematiksel fiziğin yetersizliği ve stokhastik sistemleri gerçeğe yakın tasvir eden kesirsel matematiğin önemi matematiksel fizikte bazı diferansiyel denklemlerin kesirsel matematikle çözümlerinin yapılabileceğini göstermiştir. Kesirsel matematik, sıradan mertebeli türev ve integrallerin uygulamaları ve aydınlatılmasıyla ilgili matematiksel analizde bir alandır. Bu konu üzerine son yıllarda yapılan çalışmalar göstermiştir ki, kesirsel matematik fizik ve mühendisliğin farklı alanlarında fraktal olguyu da içine alacak şekilde kullanılmaktadır. Günümüzde, fraktal geometri ve kesirsel matematik, kompleks sistemler için fenomolojik teorilere uygulanmaktadır. Fizikçilerin ilgilendiği birçok konu kesirsel matematik kullanılarak çalışılmaktadır. Kesirsel yaklaşım aynı zamanda, doğal sistemlerin kuvvet yasa formu ile bu formdan sapma gösterdikleri davranışları arasındaki ilişkiyi ortaya koyan matematiksel bir araçtır. Buradan hareketle, bu tezde kesirsel diferansiyel denklemlerden biri olan kesirsel difüzyon denklemi ve schrödinger denklemi ile olan ilişkisi ele alınacak ve Mittag-Leffler fonksiyonunun önemi tartışılacaktır.

Özet (Çeviri)

The lack of standard mathematical physics in depicting the dynamics of complex physical systems and the importance of fractional mathematics depicting stochastic systems in real life have shown that some differential equations in mathematical physics can be solved with fractional mathematics. Fractional mathematics is an area of mathematical analysis related to the applications and illumination of ordinary-order derivatives and integrals. Recent studies on this subject have shown that fractional mathematics is used to include fractal phenomena in different fields of physics and engineering. Nowadays, fractal geometry and fractional mathematics are applied to phenomological theories for complex systems. Many subjects that physicists are interested in are studied using fractional mathematics. The fractional approach is also a mathematical tool that demonstrates the relationship between natural systems' force and law form and their behavior. In this thesis, the relation between the fractional diffusion equation and the schrödinger equation, which is one of the fractional differential equations, will be discussed and the importance of Mittag-Leffer function will be discussed.

Benzer Tezler

  1. Transport olayının istatistiksel mekanik yöntemlerle incelenmesi

    Investigations of transport phenomena by using statistical mechanics methods

    HÜSEYİN ŞİRİN

    Doktora

    Türkçe

    Türkçe

    2011

    Fizik ve Fizik MühendisliğiEge Üniversitesi

    Fizik Ana Bilim Dalı

    PROF. DR. FEVZİ BÜYÜKKILIÇ

  2. Doğal akarsularda ve sinüs kanallarda boyuna dispersiyon katsayısının belirlenmesi

    Determinational of longitudinal dispersion coefficient in natural riverand sinuous channels

    MURAT ŞİMŞEK

    Yüksek Lisans

    Türkçe

    Türkçe

    2000

    İnşaat Mühendisliğiİstanbul Teknik Üniversitesi

    PROF.DR. M. EMİN SAVCI

  3. Fractional differential equations and their applications

    Kesirsel diferansiyel denklemler ve uygulamaları

    TANSEL AVKAR

    Yüksek Lisans

    İngilizce

    İngilizce

    2004

    MatematikÇankaya Üniversitesi

    Matematik ve Bilgisayar Bilimleri Ana Bilim Dalı

    DOÇ. DR. DUMİTRU BALEANU

  4. Kolesteatom cerrahisi yapılan hastaların takibinde farklı zamanlardaki manyetik rezonans görüntüleme bulgularının ikinci bakış cerrahisiyle karşılaştırılması

    Comparison of magnetic resonance imaging findings at different time points with second-look surgery in the follow-up of patients undergoing cholesteatoma surgery

    EMRE OKUR

    Tıpta Uzmanlık

    Türkçe

    Türkçe

    2025

    Kulak Burun ve BoğazSağlık Bilimleri Üniversitesi

    Kulak Burun Boğaz ve Baş-Boyun Cerrahisi Ana Bilim Dalı

    PROF. DR. REFİA GÜL CANER MERCAN

  5. Modelıng dısease progressıon wıth dıffusıon-based generatıve models

    Difüzyon tabanlı üretken modellerle hastalık ilerleyişinin modellenmesi

    MERYEM MİNE KURT

    Yüksek Lisans

    İngilizce

    İngilizce

    2025

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolOrta Doğu Teknik Üniversitesi

    Modelleme ve Simülasyon Ana Bilim Dalı

    PROF. DR. ALPTEKİN TEMİZEL